Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=đã cho.
=>3A=3+3^2+3^3+3^4+...+3^2012+3^2013.
=>3A-A=3^2013-1.
=>2A=3^2013-1.
=>A=\(\frac{3^{2013-1}}{2}\)
=>B-A=3^2013:2-(3^2013-1)/82.
=>B-A=1/2.
Vậy B-A=1/2.
Ta có: 3A=3+\(^{3^2+3^3+3^4+3^5+...+3^{2012}+3^{2013}}\)
\(\Rightarrow\)3A-A=2A=(\(3+3^2+3^3+3^4+...+3^{2013}\)) - (\(1-3^{ }-3^2-3^3-3^4-...-3^{2012}\))
\(\Rightarrow\)2A=\(3^{2013}-1\)\(\Rightarrow\)A=\(\left(3^{2013}-1\right):2\)\(\Rightarrow\)B-A=(\(^{\left(3^{2013}:2\right)-\left(\left(3^{2013}-1\right):2\right)\Rightarrow}\)
A = 1 + 3 + 32 +...+ 32012
3A = 3 + 32 + 33 +...+ 32013
3A - A = (3 + 32 + 33 +...+ 32013) - (1 + 3 + 32 +...+ 32012)
2A = 32013 - 1
A = \(\frac{3^{2013}-1}{2}\)
=> B - A = \(\frac{3^{2013}}{2}-\frac{3^{2013}-1}{2}=\frac{3^{2013}-\left(3^{2013}-1\right)}{2}=\frac{3^{2013}-3^{2013}+1}{2}=\frac{1}{2}\)
Bài 2 :
Ta có :
\(A=1+3+3^2+...+3^{2012}\)
\(3A=3+3^2+3^3+...+3^{2013}\)
\(3A-A=\left(3+3^2+3^3+...+3^{2013}\right)-\left(1+3+3^2+...+3^{2012}\right)\)
\(2A=3^{2013}-1\)
\(A=\frac{3^{2013}-1}{2}\)
\(\Rightarrow\)\(A-B=\frac{3^{2013}-1}{2}-\frac{3^{2013}}{2}=\frac{3^{2013}-1-3^{2013}}{2}=\frac{-1}{2}\)
Vậy \(A-B=\frac{-1}{2}\)
Chúc bạn học tốt ~
bn tham khảo link này nha :https://olm.vn/hoi-dap/question/67497.html
Bài 1:
a. https://olm.vn/hoi-dap/detail/100987610050.html
b. Giống nhau hoàn toàn => P=Q
Chỉ biết thế thôi
Ta có \(A=\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+...+\left(\frac{3}{2}\right)^{2012}\)
\(\Rightarrow\frac{3}{2}A=\frac{3}{2}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+....\left(\frac{3}{2}\right)^{2013}\)
\(\Rightarrow\frac{3}{2}A-A=\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}\)hay \(\frac{1}{2}A=\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}\)
Suy ra \(A=2.\text{[}\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}\text{]}\)
Khi đó \(B-A=\frac{\left(\frac{3}{2}\right)^{2013}}{2}-2.\text{[}\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}\text{]}\)
\(A=\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+...+\left(\frac{3}{2}\right)^{2012}\)
\(\frac{3}{2}.A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2013}\)
\(\Rightarrow\frac{3}{2}.A-A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2013}-\left[\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+...+\left(\frac{3}{2}\right)^{2012}\right]\)
\(\Rightarrow\frac{1}{2}.A=\frac{3}{4}+\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}-\frac{3}{2}=\left(\frac{3}{2}\right)^{2013}-\frac{5}{4}\)
\(\Rightarrow A=2.\left(\frac{3}{2}\right)^{2013}-\frac{5}{2}\)
\(B-A=\frac{1}{2}.\left(\frac{3}{2}\right)^{2013}-2.\left(\frac{3}{2}\right)^{2013}+\frac{5}{2}=-\left(\frac{3}{2}\right)^{2014}+\frac{5}{2}\)
\(3A=3+3^2+3^3+3^4+3^5+...+3^{2013}\)
\(A=\frac{3A-A}{2}=\frac{3^{2013}-1}{2}\)
\(B-A=\frac{3^{2013}}{2}-\frac{3^{2013}-1}{2}=\frac{1}{2}\)
dài quá lười viết lắm bạn ơi