Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
ta có: x+2y=1 => x=1-2y
thay vào bt, ta có:
\(A=\left(1-2y\right)^2+2y^2=1-4y+4y^2+2y^2=6y^2-4y+1\\ A=6\left(x-\dfrac{4}{2.6}\right)^2+\dfrac{4.6.1-\left(-4\right)^2}{4a}\ge\dfrac{4.6.1-\left(-4\right)^2}{46}=\dfrac{1}{3}\)
A đạt min khi x-1/3=0 => x=1/3
vậy MIN A=1/3 tại x=1/3
áp dụng bđt cô si cho 4 số ta có
\(x^4+\dfrac{1}{16}+\dfrac{1}{16}+\dfrac{1}{16}\ge4\sqrt[4]{x^4.\dfrac{1}{16}.\dfrac{1}{16}.\dfrac{1}{16}}\)
⇔ \(x^4+\dfrac{3}{16}\ge x.\dfrac{1}{2}\)
cmtt ta có
\(y^4+\dfrac{3}{16}\ge y\dfrac{1}{2}\)
cộng các vế của bđt trên ta có
\(x^4+y^4+\dfrac{3}{8}\ge\dfrac{1}{2}\left(x+y\right)\)
⇔ \(C+\dfrac{3}{8}\ge\dfrac{1}{2}\)
⇔ \(C\ge\dfrac{1}{8}\)
minC=\(\dfrac{1}{8}\) khi x=y=\(\dfrac{1}{2}\)
Mình giải cơ bản mà mọi người cùng hiểu
x = (7 + 3y)/4
Thế vào : 2( 7 + 3y)² / 16 + 5y²
= ( 7 + 3y)² / 8 + 5y²
= [( 7 + 3y)² + 40y² ] / 8
= ( 49 + 42y + 9y² + 40y² ) / 8
= ( 49 + 42y + 49y² ) / 8
= [ (7y)² + 2.7.3y + 9 + 40 ] / 8
= ( 7y + 3 )²/8 + 40/8
= (7y + 3)²/8 + 5
Ta có : (7y + 3)² ≥ 0 , với mọi y thuộc |R
<=> (7y + 3)²/8 ≥ 0 , với mọi y thuộc |R
<=> (7y + 3)²/8 + 5 ≥ 5 , với mọi y thuộc |R
Dấu "=" xảy ra khi (7y + 3)² = 0 <=> 7y + 3 = 0<=> y = -3/7 => x = 10/7
Vậy giá trị nhỏ nhất của 2x² + 5y² là Amin = 5 khi (x ; y) = ( 10/7 ; -3/7 )
x = (7 + 3y)/4
Thế vào : 2( 7 + 3y)² / 16 + 5y²
= ( 7 + 3y)² / 8 + 5y²
= [( 7 + 3y)² + 40y² ] / 8
= ( 49 + 42y + 9y² + 40y² ) / 8
= ( 49 + 42y + 49y² ) / 8
= [ (7y)² + 2.7.3y + 9 + 40 ] / 8
= ( 7y + 3 )²/8 + 40/8
= (7y + 3)²/8 + 5
Ta có : (7y + 3)² ≥ 0 , với mọi y thuộc |R
<=> (7y + 3)²/8 ≥ 0 , với mọi y thuộc |R
<=> (7y + 3)²/8 + 5 ≥ 5 , với mọi y thuộc |R
Dấu "=" xảy ra khi (7y + 3)² = 0 <=> 7y + 3 = 0<=> y = -3/7 => x = 10/7
Vậy giá trị nhỏ nhất của 2x² + 5y² là Amin = 5 khi (x ; y) = ( 10/7 ; -3/7 )
a. \(x+2y=1\Rightarrow x=1-2y\). Thay vào ta được:
\(A=\left(1-2y\right)^2+2y^2=1-4y+4y^2+2y^2=6y^2-4y+1=6\left(y^2-\dfrac{2}{3}y+\dfrac{1}{3}\right)=6\left(y^2-2.y.\dfrac{1}{3}+\dfrac{1}{9}\right)+\dfrac{4}{3}=\left(y-\dfrac{1}{3}\right)^2+\dfrac{4}{3}\ge\dfrac{4}{3}\)\(\Rightarrow Min_A=\dfrac{4}{3}\Leftrightarrow x=y=\dfrac{1}{3}\)
b. \(4x-3y=7\Rightarrow x=\dfrac{7+3y}{4}\) Thay vào ta được:
\(2.\left(\dfrac{7+3y}{4}\right)^2+5.y^2=2.\left(\dfrac{49+42y+9y^2}{16}\right)+5y^2=\dfrac{98+84y+18y^2+80y^2}{16}=\dfrac{98y^2+84y+98}{16}=\dfrac{98\left(y^2+\dfrac{6}{7}y+\dfrac{9}{49}\right)+80}{16}=\dfrac{98\left(y+\dfrac{3}{7}\right)^2+80}{16}\ge5\)\(\Rightarrow Min_B=5\Leftrightarrow x=\dfrac{10}{7};y=-\dfrac{3}{7}\)
c. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a^3 + b^3. - Bất đẳng thức và cực trị - Diễn đàn Toán học
Bài 1:
a)
\(A=x^2+y^2-xy-3y+2016=(x^2-xy+\frac{y^2}{4})+(\frac{3y^2}{4}-3y+3)+2013\)
\(=(x-\frac{y}{2})^2+3(\frac{y}{2}-1)^2+2013\)
\(\geq 2013\)
Vậy GTNN của $A$ là $2013$. Giá trị này đạt được khi \(\left\{\begin{matrix} x-\frac{y}{2}=0\\ \frac{y}{2}-1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=2\\ x=1\end{matrix}\right.\)
b)
\(B=2x^2+5y^2+4xy-6+5x-9\)
\(=5(y^2+\frac{4}{5}xy+\frac{4}{25}x^2)+\frac{6}{5}x^2+5x-15\)
\(=5(y+\frac{2}{5}x)^2+\frac{6}{5}(x^2+\frac{25}{6}x+\frac{25^2}{12^2})-\frac{485}{24}\)
\(=5(y+\frac{2}{5}x)^2+\frac{6}{5}(x+\frac{25}{12})^2-\frac{485}{24}\geq \frac{-485}{24}\)
Vậy GTNN của $B$ là $\frac{-485}{24}$
Giá trị này đạt được khi \(\left\{\begin{matrix} y+\frac{2}{5}x=0\\ x+\frac{25}{12}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-\frac{25}{12}\\ y=\frac{5}{6}\end{matrix}\right.\)
c)
\(C=x^2+xy+y^2-3x-3y+2018\)
\(=\frac{4x^2+4xy+4y^2-12x-12y+8072}{4}=\frac{(4x^2+4xy+y^2)+3y^2-12x-12y+8072}{4}\)
\(=\frac{(2x+y)^2-6(2x+y)+3y^2-6y+8072}{4}\)
\(=\frac{(2x+y)^2-6(2x+y)+9+3(y^2-2y+1)+8060}{4}=\frac{(2x+y-3)^2+3(y-1)^2+8060}{4}\)
\(\geq \frac{8060}{4}=2015\)
Vậy $C_{\min}=2015$. Giá trị đạt được khi \(\left\{\begin{matrix} 2x+y-3=0\\ y-1=0\end{matrix}\right.\Leftrightarrow x=y=1\)
Bài 2:
a)
\(-A=x^2+4y^2-2x+4y-5=(x^2-2x+1)+(4y^2+4y+1)-7\)
\(=(x-1)^2+(2y+1)^2-7\geq -7\)
\(\Rightarrow A\leq 7\)
Vậy GTLN của $A$ là $7$.
Giá trị này đạt được khi \(\left\{\begin{matrix} x-1=0\\ 2y+1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=\frac{-1}{2}\end{matrix}\right.\)
b)
ĐKĐB \(\Leftrightarrow B+2x^2+10y^2-6xy-4x+3y-2=0\)
\(\Leftrightarrow 2x^2-2x(3y+2)+(10y^2+3y-2+B)=0\)
Coi đây là PT bậc 2 ẩn $x$. Vì dấu "=" tồn tại nên PT luôn có nghiệm
\(\Rightarrow \Delta'=(3y+2)^2-2(10y^2+3y-2+B)\geq 0\)
\(\Leftrightarrow B\leq \frac{-11y^2+6y+8}{2}=\frac{\frac{97}{11}-11(y-\frac{3}{11})^2}{2}\leq \frac{97}{22}\)
Vậy $B_{\max}=\frac{97}{22}$
4x^2/5y^2 * 5y/6x * 3y/2x= 1/3
(x-2)(x+2)/3(x+4) * x+4/2(x-2)=x+2/6
5(x+2)/4(x-2)* -2(x-2)/x+2=-5/2
\(4x-3y=7\Leftrightarrow x=\frac{3y+7}{4}\)
Thay vào ta được :
\(2\cdot\left(\frac{3y+7}{4}\right)^2+5y^2\)
\(=\frac{9y^2+42y+49}{8}+\frac{40y^2}{8}\)
\(=\frac{49y^2+42y+49}{8}\)
\(=\frac{\left(7y\right)^2+2\cdot7y\cdot3+3^2+40}{8}\)
\(=\frac{\left(7y+3\right)^2+40}{8}\ge\frac{40}{8}=5\forall y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\frac{10}{7}\\y=-\frac{3}{7}\end{cases}}\)
thay y = \(\frac{4x-7}{3}\)vào A = 2x2 + 5y2 , ta được
9A = 98x2 - 280x + 245 = 2 . ( 7x - 10 )2 + 45 \(\ge\)45
\(\Rightarrow\)A \(\ge\)5
Vậy min A = 5 \(\Leftrightarrow x=\frac{10}{7};y=-\frac{3}{7}\)