Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số dương lớn nhất trong ba số dương x, y, z thỏa mãn :
\(x=1-|1-2y|\)
\(y=1-|1-2z|\)
\(z=1-|1-2x|\)
GỢI Ý
BN CÓ THỂ VÀO NHỮNG CÂU HỎI TƯƠNG TỰ KHAM KHẢO NHA
CHÚC BN HỌC TỐT
nhớ k mình nha
a./ \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{10}{20}=\frac{1}{2}\)
\(\Rightarrow x=\frac{5}{2};y=2;z=\frac{7}{2}\)
b./ \(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{x+y}{9}=\frac{18}{9}=2\)
\(\Rightarrow x=2\cdot4=8;y=2\cdot5=10;z=2\cdot2=4\)
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)
=>\(B=\frac{\left(a^2x+b^2y+c^2z\right)^3}{x^3+y^3+z^3}=\frac{\left(a^2ak+b^2bk+c^2ck\right)^3}{\left(ak\right)^3+\left(bk\right)^3+\left(ck\right)^3}=\frac{\left(a^3k+b^3k+c^3k\right)^3}{a^3k^3+b^3k^3+c^3k^3}\)
\(=\frac{k^3\left(a^3+b^3+c^3\right)^3}{k^3\left(a^3+b^3+c^3\right)}=\left(a^3+b^3+c^3\right)^2\)
cảm ơn trà my nhiều
bài nè ko phải gửi đi lấy điểm đâu các bn.
Bài 1:
a: =>3x-3-4=0
=>3x=7
hay x=7/3
b: =>2x-2+3x+6=0
=>5x+4=0
hay x=-4/5
c: =>\(4x^2+4x-1=0\)
hay \(x\in\left\{\dfrac{-1+\sqrt{2}}{2};\dfrac{-1-\sqrt{2}}{2}\right\}\)
d: \(\Leftrightarrow3x-3+2x-4+6=0\)
=>5x+1=0
hay x=-1/5
Theo đầu bài ta có:
\(\hept{\begin{cases}2x-y=1\\2y-z=2\\2z-x=3\end{cases}}\)
\(\Rightarrow\left(2x-y\right)+\left(2y-z\right)+\left(2z-x\right)=1+2+3\)
\(\Rightarrow\left(2x-x\right)+\left(2y-y\right)+\left(2z-z\right)=6\)
\(\Rightarrow x+y+z=6\)
Vậy x + y + z = 6.