Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Hoàng Kiều Trinh - Toán lớp 9 - Học toán với OnlineMath
Ta có :\(-2\le a\le3\Rightarrow a+2\ge0\) và \(a-3\le0\)\(\Rightarrow\left(a+2\right)\left(a-3\right)\le0\Rightarrow a^2-a-6\le0\Rightarrow a\ge a^2-6\)
Cmtt ta cũng có : \(b\ge b^2-6\) ; \(c\ge c^2-6\)
Cộng từng vế 3 bất đẳng thức trên ta đc : \(a+b+c\ge a^2+b^2+c^2-18=4\)
Dấu = xảy ra <=> (a ; b ; c) = (-2;3;3) ; (3;-2;3) ; (3;3;-2)
\(a\in\left[-2;3\right]\Rightarrow\left(a+2\right)\left(a-3\right)\le0\Leftrightarrow a^2-a-6\le0\)
Tương tự ta có: \(b^2-b-6\le0\); \(c^2-c-6\le0\)
Cộng theo vế 2 bđt: \(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)-18\le0\)
\(\Rightarrow-\left(a+b+c\right)\le18-22=-4\)
\(\Rightarrow a+b+c\ge4\)
Dấu \("="\) xảy ra \(\Leftrightarrow\left(a;b;c\right)=\left(-2;3;3\right)\) và các hoán vị
Câu 1:
Ta có: Áp dụng BĐT phụ \(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\)
=> \(2\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge9\)
=> \(\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge4,5\) (*)
và BĐT Cau -chy ta có:
\(P+3=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{a+c}+\dfrac{a+b+c}{a+b}\)
\(+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\)
<=> \(P+3\ge\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\)
\(+2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}+2\sqrt{\dfrac{b}{c}.\dfrac{c}{a}}+2\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}\)
<=> \(P+3\ge4,5+6=10,5\) ( Theo (*)) => \(P\ge7,5\)
=> Dấu = xảy ra <=> a = b = c
từ $x\le 3$ suy ra $x=3$ là điểm rơi
suy ra $y=8$ suy ra $P_{max}= 3*8=24$
\(\left(a-3\right)\left(a+2\right)\le0\Rightarrow a^2-a-6\le0\)
Tương tự: \(b^2-b-6\le0;c^2-c-6\le0\)
Cộng theo vế ta có: \(a^2+b^2+c^2-\left(a+b+c\right)-18\le0\)
\(\Rightarrow22-\left(a+b+c\right)-18\le0\)\(\Rightarrow a+b+c\ge4\)
Dấu "=" xảy ra khi \(\left(a,b,c\right)=\left(-2;3;3\right);\left(3;-2;3\right);\left(3;3;-2\right)\)
\(-2\le a\le3\Rightarrow\left(a+2\right)\left(a-3\right)\le0\)
\(\Leftrightarrow a^2-a-6\le0\Rightarrow a\ge a^2-6\)
Tương tự ta có: \(b\ge b^2-6\) ; \(c\ge c^2-6\)
\(\Rightarrow a+b+c\ge a^2+b^2+c^2-18=4\)
\(P_{min}=4\) khi \(\left(a;b;c\right)=\left(3;3;-2\right)\) và hoán vị