Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì p là số nguyên tố lớn hơn 3 nên p chia cho 3 dư 1 hoặc 2
+) \(p\equiv2\left(mod3\right)\)
\(\Rightarrow p+4\equiv6\left(mod3\right)\equiv0\left(mod3\right)\)
\(\Rightarrow p+4⋮3\)
Mà \(p+4>3\) nên \(p+4\) là hợp số (loại)
\(\Rightarrow p\equiv1\left(mod3\right)\)
\(\Rightarrow p+8\equiv9\left(mod3\right)\)
\(\Rightarrow p+8⋮3\)
Vì p + 8 > 3
\(\Rightarrow\)p + 8 là hợp số (đpcm)
b) (d + 2c + 4b) như thế mới đúng chứ nhỉ?!
Ta có: \(\overline{abcd}=1000a+100b+10c+d\)
\(=4b+2c+d+1000a+96b+8c\)
Mà \(1000a⋮8\); \(96b⋮8\)và \(8c⋮8\)
\(\Rightarrow4b+2c+d⋮8\)
\(\Rightarrow\overline{abcd}⋮8\) (đpcm)
Nếu bạn thấy mình làm khó hiểu câu a thì để mình làm cách khác
Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 với k là số tự nhiên khác 0
Với p = 3k + 2
=> p + 4 = 3k + 6 chia hết cho 3
p + 4 > 3 => p + 4 là hợp số
=> p = 3k + 2 (loại)
=> p = 3k + 1
=> p + 8 = 3k + 9 chia hết cho 3
Mà p + 8 > 3 nên p + 8 là hợp số (đpcm)
Ta có:
abcd = 1000a + 100b + 10c + d = 1000a + 96b + 4b + 8c + 2c + d = (1000a + 96b + 8c) + (d + 2c + 4b)
Mà d + 2c + 4b chia hết cho 8 theo đề bài
Và 1000a + 96b + 8c cũng chia hết cho 8
=> abcd chia hết cho 8
Ta có abcd = 1000a + 100b + 10c + d
= 1000a + 96b + 8c + (d + 2c + 4b)
Ta thấy 1000a chia hết cho 8, 96a chia hết cho 8, 8c chia hết cho 8, d+2c+4b chia hết cho 8 (giả thuyết)
Vậy abcd chia hết cho 8 (đpcm)
Ta có: abcd = 1000a + 100b + 10c + d
abcd = 1000a + 96b + 4b + 8c + 2c + d
abcd = 1000a + 96b + 8c + ( 4b + 2c + d )
Ta thấy: 1000a = 8.125.a chia hết cho 8
96b = 8.12.b chia hết cho 8
8c chia hết cho 8
( 4b + 2c + d ) chia hết cho 8 ( gt )
=> 100a + 96b + 8c + ( 4b + 2c + d ) chia hết cho 8
=> abcd chia hết cho 8
=> Đpcm
a) Vì p là số nguyên tố lớn hơn 3
=> p có dạng 3k + 1 hoặc 3k + 2 ( k thuộc N*)
Nếu p có dạng 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3 ( k + 2 ) là hợp số
=>p không có dạng 3k + 2
=>p có dạng 3k + 1
=> p + 8 = 3k + 1 + 8 = 3k + 9 = 3 ( k + 3 ) là hợp số ( đpcm )
b)
Ta có:
abcd =1000a + 100b + 10c + d = 1000a + 96b + 4b + 8c + 2c + d = ( 1000a + 96b + 8c ) + ( d + 2c + 4b ) = 8 ( 125a + 12b + c ) + ( d + 2c + 4b )
Vì 8 ( 125a + 12b + c ) chia hết cho 8
Mà ( d + 2c + 4b ) chia hết cho 8
=> 8 ( 125a + 12b + c ) + ( d + 2c + 4b ) chia hết cho 8
hay abcd chia hết cho 8 ( đpcm )