K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2019

\(\sqrt{x}=x\) nếu \(x=0\)hoặc \(x=1\)

\(\sqrt{x}< x\)nếu \(x>0\)

23 tháng 6 2019

Giải

Vì x\(\ge\)0 nên √x \(\ge\)0

Từ đó ta có 3 trường hợp

 √x=x \(\Leftrightarrow\)x=x^2 \(\Leftrightarrow\)x-x^2 =0   <=>  x(1-x)=0  <=> x=0 hoặc x=1

√x< x   <=>.x<x^ 2.   <=>.  x-x^2 < 0  <=>.  x(1-x) <  0 <=> x>1

√x>x.  <=> x>x^2.  <=> x-x^2 > 0.  <=> x(1- x) >0. <=> 0<x<1

Vậy nếu x=0 hoặc x=1 thì √x=x

Nếu x>1 thì √x<x

Nếu 0<x<1 thì √x>x 

Mình biết mình viết khá là khó hiểu nên có gì thắc mắc bạn hãy nhắn tin cho mk nha ﹋o﹋

3 tháng 9 2018

Ta có x2≥x với x≥0⇒\(\sqrt{x^2}\ge\sqrt{x}\Rightarrow x\ge\sqrt{x}\)

11 tháng 8 2018

\(\sqrt{x}< x\)

vì \(\left(\sqrt{x}\right)^2=x\)với \(\forall\)\(x\ge0\)

học tốt

11 tháng 8 2018

Vì: \(x\ge0\) nên \(\sqrt{x}\ge0\)

+) \(\sqrt{x}=x\Leftrightarrow x=x^2\Leftrightarrow x-x^2=0\Leftrightarrow x\left(1-x\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

+) \(\sqrt{x}< x\Leftrightarrow x< x^2\Leftrightarrow x-x^2< 0\Leftrightarrow x\left(1-x\right)< 0\Leftrightarrow x>1\)

+) \(\sqrt{x}>x\Leftrightarrow x>x^2\Leftrightarrow x-x^2>0\Leftrightarrow x\left(1-x\right)>0\Leftrightarrow0< x< 1\)

Vậy: Nếu \(x=0\) thì \(x=1\) hoặc \(\sqrt{x}=x\)

        Nếu \(x>1\) thì \(\sqrt{x}< x\)

        Nếu \(0< x< 1\) thì \(\sqrt{x}>x\)

=.= hok tốt!!

sqrt(x)<x

sqrt(x)=x voi x=1,x=0

17 tháng 10 2018

\(\left(x-1\right)\left(x^3-1\right)=\left(x-1\right)^2\left(x^2+x+1\right)\ge0\) ( Đúng )

a: \(=-xy\cdot\dfrac{\sqrt{xy}}{x}=-y\sqrt{yx}\)

b: \(=\sqrt{\dfrac{-105x^3}{35^2}}=\sqrt{-105x}\cdot\dfrac{x}{35}\)

c: \(=\sqrt{\dfrac{5a^3b}{49b^2}}=\sqrt{5ab}\cdot\dfrac{a}{7b}\)

d: \(=-7xy\cdot\dfrac{\sqrt{3}}{\sqrt{xy}}=-7\sqrt{3}\cdot\sqrt{xy}\)

31 tháng 7 2018

P=\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}\left(\sqrt{x-1}\right)}\)

\(=\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}}=\frac{\sqrt{x}}{\sqrt{x}}+\frac{1}{\sqrt{x}}=1+\frac{1}{\sqrt{x}}\)

Để\(P\in Z\)<=>\(\frac{1}{\sqrt{x}}\in Z\Leftrightarrow\sqrt{x}\inƯ\left(1\right)=1\)\(Với\sqrt{x}=1\Leftrightarrow x=1\)loại

Vậy không có giá trị x nào thỏa mãn P\(\in\)Z

3 tháng 7 2017

\(3\sqrt{5}=\sqrt{45}\)

\(-5\sqrt{2}=-\sqrt{25}.\sqrt{2}=-\sqrt{50}\)

\(\dfrac{-2}{3}\sqrt{xy}=-\sqrt{\dfrac{4}{9}}.\sqrt{xy}=-\sqrt{\dfrac{4}{9}xy}\left(xy\ge0\right)\)

\(x\sqrt{\dfrac{2}{x}}=\sqrt{x^2}.\sqrt{\dfrac{2}{x}}=\sqrt{\dfrac{2x^2}{x}}=\sqrt{2x}\left(x>0\right)\)

\(P=\dfrac{x-1}{x-\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

Để P là số nguyên thì 1 chia hết cho căn x

=>căn x=1

=>x=1

15 tháng 8 2020

BĐT CẦN CM 

<=>   \(\frac{xy+yz+zx}{xyz}\ge\frac{9}{x+y+z}\)

<=>   \(\left(xy+yz+zx\right)\left(x+y+z\right)\ge9xyz\)

ÁP DỤNG BĐT CAUCHY 3 SỐ TA ĐƯỢC:

\(\hept{\begin{cases}xy+yz+zx\ge3\sqrt[3]{x^2y^2z^2}\\x+y+z\ge3\sqrt[3]{xyz}\end{cases}}\)

NHÂN 2 BĐT ĐÓ LẠI TA ĐƯỢC:

\(\Rightarrow\left(xy+yz+zx\right)\left(x+y+z\right)\ge3\sqrt[3]{x^2y^2z^2}.3\sqrt[3]{xyz}=9\sqrt[3]{x^3y^3z^3}=9xyz\)

VẬY TA CÓ ĐPCM.

DẤU "=" XẢY RA <=>    \(x=y=z\)

15 tháng 8 2020

Đây là bất đẳng thức Svacxo nhé 

và đây là dạng tổng quát và cách chứng minh 

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

Ta có : \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)(*)

\(< =>\left(a^2x+b^2y\right)\left(x+y\right)\ge xy\left(a+b\right)^2\)

\(< =>\left(bx-ay\right)^2\ge0\)*đúng*

Áp dụng liên tiếp BĐT (*) ta có : 

\(\left(\frac{a^2}{x}+\frac{b^2}{y}\right)+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

Vậy ta có điều phải chứng minh