Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Sửa đề: \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow\) \(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)-2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=0\)
\(\Leftrightarrow\) \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)
Với mọi x, y, z ta luôn có: \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0;\) \(\left(\sqrt{y}-\sqrt{z}\right)^2\ge0;\) \(\left(\sqrt{z}-\sqrt{x}\right)^2\ge0;\)
\(\Rightarrow\) \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)
Do đó dấu "=" xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2=0\\\left(\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{z}-\sqrt{x}\right)^2=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\) \(\Leftrightarrow\) x = y = z
3/ Đây là BĐT Cô-si cho 2 số dương a và b, ta biến đổi tương đương để chứng minh
\(a+b\ge2\sqrt{ab}\) \(\Leftrightarrow\) \(\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\) \(\Leftrightarrow\) \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\) \(a^2+b^2+2ab-4ab\ge0\) \(\Leftrightarrow\) \(a^2-2ab+b^2\ge0\) \(\Leftrightarrow\) \(\left(a-b\right)^2\ge0\)
Đẳng thức xảy ra khi và chỉ khi a = b
2/ Vì x > y và xy = 1 áp dụng BĐT Cô-si ta được:
\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{1}{x-y}\ge2\sqrt{\left(x-y\right).\frac{1}{x-y}}=2\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x>y\\xy=1\\x-y=\frac{1}{x-y}\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\)
1)đề thiếu
2)\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}\)\(=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)
\(x>y\Rightarrow x-y>0\).Áp dụng Bđt Côsi ta có:
\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}=2\sqrt{2}\)
Đpcm
3)\(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
Đpcm
Lời giải:
Ta có: \(x+y+z=xyz\Rightarrow x(x+y+z)=x^2yz\)
\(\Rightarrow x(x+y+z)+yz=x^2yz+yz\)
\(\Rightarrow (x+y)(x+z)=yz(x^2+1)\)
Do đó: \(\frac{1+\sqrt{x^2+1}}{x}=\frac{1+\sqrt{\frac{(x+y)(x+z)}{yz}}}{x}\leq \frac{1+\frac{1}{2}(\frac{x+y}{y}+\frac{x+z}{z})}{x}\) theo BĐT AM-GM:
Thực hiện tương tự với các phân thức khác ta suy ra:
\(\text{VT}\leq \frac{1+\frac{1}{2}(\frac{x+y}{y}+\frac{x+z}{z})}{x}+\frac{1+\frac{1}{2}(\frac{y+z}{z}+\frac{y+x}{x})}{y}+\frac{1+\frac{1}{2}(\frac{z+x}{x}+\frac{z+y}{y})}{z}\)
\(\text{VT}\leq 3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3(xy+yz+xz)}{xyz}\)
Mà theo AM-GM:
\(\frac{3(xy+yz+xz)}{xyz}\leq \frac{(x+y+z)^2}{xyz}=\frac{(xyz)^2}{xyz}=xyz\)
Do đó: \(\text{VT}\leq xyz\)
Ta có đpcm.
a) \(x-\sqrt{x}+1>0\)mà \(\sqrt{x}\)>0 => biểu thức > 0
b) \(\sqrt{x}\)\(\le x-\sqrt{x}+1\)<=> \(x-2\sqrt{x}+1\ge0\)(nhân lên do không âm)
<=> \(\left(\sqrt{x}-1\right)^2\ge0\)=> đpcm ^^
\(\sqrt{1-x^2}\ge0\) là hiển nhiên của căn thức
Lại có \(x^2\ge0\Rightarrow1-x^2\le1\Rightarrow\sqrt{1-x^2}\le1\)
Nguyễn Bùi Đại Hiệp
Do \(-1\le x\le1\Rightarrow2-x^2>0\)
BĐT tương đương:
\(\Leftrightarrow2+2\sqrt{1-x^2}\ge\left(2-x^2\right)^2\)
Đặt \(\sqrt{1-x^2}=t\Rightarrow0\le t\le1\)
\(\Leftrightarrow2+2t\ge\left(1+t^2\right)^2\)
\(\Leftrightarrow t^4+2t^2-2t-1\le0\)
\(\Leftrightarrow\left(t-1\right)\left(t^3+t^2+3t+1\right)\le0\) (luôn đúng \(\forall t\in\left[0;1\right]\))
Dấu "=" xảy ra khi \(t=1\) hay \(x=0\)