Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\left[\left(2n+1-1\right):2+1\right]\times\left(2n+1+1\right):2\)
\(S=\left(n+1\right)\times\left(2n+2\right):2\)
\(S=\left(n+1\right)\times\left(n+1\right)\)
\(S=\left(n+1\right)^2\)( dpcm )
Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
\(AB+4=\left(11...1+4\right)\left(11...1+8\right)+4=\) (có n+1 chữ số 1)
\(=11...1^2+12x11...1+36=\left(11...1+2x6x11...1+6^2\right)=\)
\(=\left(11...1+6\right)^2=11...7^2\) (có n chữ số 1)
a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\)với m là 1 số nguyên dương
Biến đổi phương trình ta có :
\(\left(2n-1;2n+1\right)=1\)nên dẫn đến :
TH1 : \(2n-1=3u^2;2n+1=v^2\)
TH2 : \(2n-1=u^2;2n+1=3v^2\)
TH1 :
\(\Rightarrow v^2-3u^2=2\)
\(\Rightarrow v^2\equiv2\left(mod3\right)\)( vô lí )
Còn lại TH2 cho ta \(2n-1\)là số chính phương
b) Ta có :
\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)
\(\Leftrightarrow n^2=3k^2+3k+1\)
\(\Leftrightarrow4n^2-1=12k^2+12k+3\)
\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)
- Xét 2 trường hợp :
TH1 : \(\hept{\begin{cases}2n-1=3p^2\\2n+1=q^2\end{cases}}\)
TH2 : \(\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)
+) TH1 :
Hệ \(PT\Leftrightarrow q^2=3p^2+2\equiv2\left(mod3\right)\)( loại, vì số chính phương chia 3 dư 0 hoặc 1 )
+) TH2 :
Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\)( đpcm )
Đặt 11...11 (n số 1) = t thì \(10^n=9t+1\)
S = 11...11 (2n số 1) - 88...88 (n số 8) + 1 = 11..11 (n số 1). 10n + 11...11 (n số 1) - 8t + 1 = t. (9t + 1) + t - 8t + 1 = 9t2 - 6t + 1 = (3t - 1)2 (là số chính phương)
Vậy S là số chính phương (đpcm)