Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 = (1 + 3) + (32 + 33) + (34 + 35) + (36 + 37) + (38 + 39) = 1.(1 + 3) + 32.(1 + 3) + 34.(1 + 3) + 36.(1 + 3) + 38.(1 + 3) = (1 + 3).(1 + 32 + 34 + 36 + 38) = 4.(1 + 32 + 34 + 36 + 38) => S ⋮ 4. Vậy S ⋮ 4 (đpcm)
\(S=1+3+3^2+...+3^9\)
Ta có: \(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^8+3^9\right)\)
\(S=4+3^2.\left(1+3\right)+...+3^8.\left(1+3\right)\)
\(S=4+3^2.4+...+3^8.4\)
\(S=4.\left(1+3^2+...+3^8\right)\)
Vì \(4⋮4\) nên \(4.\left(1+3^2+...+3^8\right)⋮4\)
Vậy \(S⋮4\).
\(#NqHahh\)
Ta có ;
S = 1 + 2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7
= ( 1 + 2 ) + ( 2 2 + 2 3 ) + ( 2 4 + 2 5 ) + ( 2 6 + 2 7 )
= ( 1 + 2 ) + 2 2 ( 1 + 2 ) + 2 4 ( 1 + 2 ) + 2 6 ( 1 + 2 )
= 3 + 2 2 .3 + 2 4 .3 + 2 6 .3
= 3 . ( 1 + 2 2 + 2 4 + 2 6 ) chia hết cho 3 ( Vì 3 chia hết cho 3 )
A = 3 + 3 2 + 3 3 + ..... + 3 9 + 3 10
= ( 3 + 3 2 ) + ( 3 3 + 3 4 ) .... + ( 3 9 + 3 10 )
= 3 ( 1 + 3 ) + 3 3 . ( 1 + 3 ) + .... + 3 9 ( 1 + 3 )
= 3 . 4 + 3 3 . 4 + .... + 3 9 . 4
= 4 . ( 3 + 33 + ... + 3 9 ) chia hết cho 4 ( Do 4 chia hết cho 4 )
\(S=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+\left(2^6+2^7\right)\)
\(S=3+3\cdot2^2+3\cdot2^4+3\cdot2^6=3\left(1+2^2+2^4+2^6\right)⋮3\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)
\(A=4\cdot3+4\cdot3^3+...+4\cdot3^9=4\cdot\left(3+3^3+...+3^9\right)⋮4\)
\(S=\left(1+3\right)+...+3^8\left(1+3\right)\)
\(=4\left(1+...+3^8\right)⋮4\)