K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

hệ thức vi ét và biệt thức denta để làm gì hả bạn ?

do`  bạn ngu hay` mình quá víp ? t í ch cho mình rồi mik làm , 

25 tháng 7 2018

Mình ngu thiệt mà, giúp mình đi. Mình làm mà thấy kết quả kì kì. Cao nhân xin giúp đỡ 

30 tháng 4 2019

1.

\(\Delta'=\left(-m\right)^2-1.\left(2m-3\right)=m^2-2m+3>0\forall m\) 

Với \(\Delta'>0\forall m\)thì  phương trình có hai nghiệm là x1, x2 ,theo Vi - et ta có :

x1 + x2 = \(-\frac{-m}{1}=m\) ;       x1x2 =\(\frac{2m-3}{1}=2m-3\)

Thay x+ x2 = m;   x1x2 = 2m - 3 vào bt A = x12 + x22 ta có :

A = x12 + x22 + 2x1x2 - 2x1x2 

A = ( x+ x2 + 2x1x2 ) - 2x1x2

A = ( x1 + x2 )2 - 2x1x2 

A = m2 - 2.( 2m - 3 )

A = m2 - 4m + 6

\(\Delta'=\left(-2\right)^2-1.6=-2< 0\) 

Vì \(\Delta'< 0\Rightarrow\) không có giá trị nào của m để bt A đạt giá trị nhỏ nhất

17 tháng 5 2018

Bạn tham khảo ở đường link dưới nhé

Câu hỏi của Châu Minh Khang - Toán lớp 9 - Học toán với OnlineMath

12 tháng 7 2018

Câu a : Ta có :

\(\Delta=4m^2+4\left(m^2+5\right)=8m^2+20>0\)

\(\Delta>0\) nên phương trình luôn có 2 nghiệm phân biệt với mọi m .

Câu b : Theo định lý vi-et ta có :

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-4m^2-5\end{matrix}\right.\)

\(A=x_1^2+x_2^2-x_1x_2=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-x_1x_2\)

\(=\left[\left(2m\right)^2-2\left(-4m^2-5\right)\right]-\left(-4m^2-5\right)\)

\(=4m^2+8m^2+10+4m^2+5\)

\(=16m^2+15\)

\(16m^2\ge0\Rightarrow16m^2+15\ge15\)

Do đó GTNN của A sẽ là 15 khi \(16m^2=0\Leftrightarrow m=0\)

31 tháng 5 2019

Đen-ta phẩy = -(m-1)2 - (m- m - 1) = m2 - 2m + 1 - m2 + m + 1= 2-m

Để pt có 2 nghiệm pb thì đen-ta phẩy \(\ge\) 0 \(\Leftrightarrow\) 2 - m \(\ge\) 0

\(\Leftrightarrow\) m \(\le\) 2

Theo ht Vi-ét ta có:

\(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x._1x_2=m^2-m-1\end{cases}}\)

Đề cho: P=x12+x22-x1x2+x1+x2 = (x1+x2)2-3x1x2+x1+x2= 4(m2-2m+1)-3(m2-m-1)+2m-2

= 4m2-8m+4-3m2+3m+3+2m-2= m2-3m+5= m2-2m.\(\frac{3}{2}\)\((\frac{3}{2})^2\)-\((\frac{3}{2})^2\) +5

= (m-3/2)2 + 29/4 \(\ge\)29/4. Vậy GTNN của P là 29/4

Dấu "=" xảy ra \(\Leftrightarrow\)m-3/2=0 \(\Leftrightarrow\)m=3/2(TMĐK m \(\le2\))

Vậy m = 3/2 thì biểu thức P đạt GTNN là 29/4

31 tháng 5 2019

MÌNH GIẢI SAI CHỔ NÀO BẠN THÔNG CẢM NHA! ^.^ !!

AH
Akai Haruma
Giáo viên
31 tháng 5 2018

Lời giải:

Ta thấy:

\(\Delta'=(-m)^2-(2m-3)=(m-1)^2+2>0, \forall m\in\mathbb{R}\)

Do đó pt luôn có hai nghiệm pb với mọi $m$

Áp dụng định lý Viete: \(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=2m-3\end{matrix}\right.\)

Khi đó: \(A=x_1^2(1-x_2^2)+x_2^2(1-x_1^2)\)

\(=(x_1^2+x_2^2)-2(x_1x_2)^2\)

\(=(x_1+x_2)^2-2x_1x_2-2(x_1x_2)^2\)

\(=4m^2-2(2m-3)-2(2m-3)^2\)

\(=-4m^2+20m-12=-(2m-5)^2+13\)

\((2m-5)^2\geq 0\Rightarrow A\leq 0+13=13\)

Vậy $A$ đạt max bằng $13$ khi \((2m-5)^2=0\Leftrightarrow m=\frac{5}{2}\)

15 tháng 4 2018

Theo hệ thức vi-ét ta có :

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1\times x_2=m^2-m+1\end{matrix}\right.\)

\(\Rightarrow A=m^2-m+1-2m\)

\(=m^2-3m+1\)

\(=\left(m^2-3m+\dfrac{9}{4}\right)-\dfrac{5}{4}\)

\(=\left(m-\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\)

Vậy GTNN của \(A=-\dfrac{5}{4}\) khi \(m=\dfrac{3}{2}\)

15 tháng 4 2018

cảm ơn bạn mình có bài kiểm tra 1 tiết có câu này