Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-2m+6=\left(m-1\right)^2+5>0\forall m\)
Vậy phương trình trên luôn có hai nghiệm phân biệt \(x_1;x_2\)
Theo hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1.x_2=2m-5\end{cases}}\)
Khi đó \(x_1^2+x_2^2-\left(x_1+x_2\right)=\left(x_1+x_2\right)^2-\left(x_1+x_2\right)-2x_1x_2\)
\(=\left(2m-2\right)^2-\left(2m-2\right)-2\left(2m-5\right)=4m^2-14m+16\)
\(=\left(2m-\frac{7}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}\)
Vậy GTNN của biểu thức trên là \(\frac{15}{4}\) khi \(m=\frac{7}{4}.\)
phải là (m-1)^2-(2m-5)= m^2-4m+6 chứ có gì đó sai sai
a
Xét \(\Delta'=m^2-m+2=m^2-m+\frac{1}{4}+\frac{7}{4}=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\)
=> pt có 2 nghiệm phân biệt với mọi giá trị m
b
Do phương trình có 2 nghiệm phân biệt nên theo Viete ta có:\(x_1+x_2=2m;x_1x_2=-2\)
Khi đó:\(x_1^2+x_2^2-x_1^2x_2^2-1\)
\(=\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1x_2\right)^2-1\)
\(=4m^2+4-4-1=4m^2-1\ge-1\)
Dấu "=" xảy ra tại m=0
Vậy............................................................
Ta có: \(\Delta=\left(2m-1\right)^2+7>0\forall x\)
Nên pt (1) có 2 nghiệm phân biệt với mọi m
Theo hệ thức Vi-et ta có:
\(x_1+x_2=2m,x_1\cdot x_2=m-2\)
\(B=x_1^2+x_2^2-x_1^2\cdot x_2^2-1=\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1x_2\right)^2-1\)
Thay Vi-et và biến đổi ta có: \(B=\left(m+\frac{1}{3}\right)^2-\frac{4}{3}\ge\frac{-4}{3}\forall m\)
Xét dấu "=" xảy ra và kết luận
hệ thức vi ét và biệt thức denta để làm gì hả bạn ?
do` bạn ngu hay` mình quá víp ? t í ch cho mình rồi mik làm ,
Đen-ta phẩy = -(m-1)2 - (m2 - m - 1) = m2 - 2m + 1 - m2 + m + 1= 2-m
Để pt có 2 nghiệm pb thì đen-ta phẩy \(\ge\) 0 \(\Leftrightarrow\) 2 - m \(\ge\) 0
\(\Leftrightarrow\) m \(\le\) 2
Theo ht Vi-ét ta có:
\(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x._1x_2=m^2-m-1\end{cases}}\)
Đề cho: P=x12+x22-x1x2+x1+x2 = (x1+x2)2-3x1x2+x1+x2= 4(m2-2m+1)-3(m2-m-1)+2m-2
= 4m2-8m+4-3m2+3m+3+2m-2= m2-3m+5= m2-2m.\(\frac{3}{2}\)+ \((\frac{3}{2})^2\)-\((\frac{3}{2})^2\) +5
= (m-3/2)2 + 29/4 \(\ge\)29/4. Vậy GTNN của P là 29/4
Dấu "=" xảy ra \(\Leftrightarrow\)m-3/2=0 \(\Leftrightarrow\)m=3/2(TMĐK m \(\le2\))
Vậy m = 3/2 thì biểu thức P đạt GTNN là 29/4
1) pt có 2 nghiệm pb <=> \(\Delta=16-4\left(-m^2\right)=16+4m^2>0\)=> pt luôn có 2 nghiệm phân biệt với mọi m
2) vì là giá trị tuyệt đối => A>=0 => Min A=0 <=> \(x1^2-x2^2=0\Leftrightarrow x1=x2\)
=> pt có 1 nghiệm kép. mà biết thức đenta luôn >0 => k tìm đc giá trị nhỏ nhất của A
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
1.
\(\Delta'=\left(-m\right)^2-1.\left(2m-3\right)=m^2-2m+3>0\forall m\)
Với \(\Delta'>0\forall m\)thì phương trình có hai nghiệm là x1, x2 ,theo Vi - et ta có :
x1 + x2 = \(-\frac{-m}{1}=m\) ; x1x2 =\(\frac{2m-3}{1}=2m-3\)
Thay x1 + x2 = m; x1x2 = 2m - 3 vào bt A = x12 + x22 ta có :
A = x12 + x22 + 2x1x2 - 2x1x2
A = ( x1 + x2 + 2x1x2 ) - 2x1x2
A = ( x1 + x2 )2 - 2x1x2
A = m2 - 2.( 2m - 3 )
A = m2 - 4m + 6
\(\Delta'=\left(-2\right)^2-1.6=-2< 0\)
Vì \(\Delta'< 0\Rightarrow\) không có giá trị nào của m để bt A đạt giá trị nhỏ nhất
Câu a : Ta có :
\(\Delta=4m^2+4\left(m^2+5\right)=8m^2+20>0\)
Vì \(\Delta>0\) nên phương trình luôn có 2 nghiệm phân biệt với mọi m .
Câu b : Theo định lý vi-et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-4m^2-5\end{matrix}\right.\)
\(A=x_1^2+x_2^2-x_1x_2=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-x_1x_2\)
\(=\left[\left(2m\right)^2-2\left(-4m^2-5\right)\right]-\left(-4m^2-5\right)\)
\(=4m^2+8m^2+10+4m^2+5\)
\(=16m^2+15\)
Vì \(16m^2\ge0\Rightarrow16m^2+15\ge15\)
Do đó GTNN của A sẽ là 15 khi \(16m^2=0\Leftrightarrow m=0\)