Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tính denlta là xong mà bạn
Tình yêu sao khác thường
Đôi lúc ta thật kiên cường
Nhiều người trách mình điên cuồng
Cứ lao theo dù không lối ra
a) Thay \(m=-5\) vào PT ta được:
\(x^2-\left(-5\right)x+2.\left(-5\right)-3=0\)
\(\Rightarrow x^2+5x-10-3=0\)
\(\Rightarrow x^2+5x-13=0\)
\(\Delta=5^2-4.1.\left(-13\right)=25+52=77>0\)
PT có 2 nghiệm phân biệt:
\(x_1=-\frac{5+\sqrt{77}}{2}\)
\(x_2=-\frac{5-\sqrt{77}}{2}\)
Vậy với m = -5 thì PT có nghiệm là \(S=\left\{-\frac{5+\sqrt{77}}{2};-\frac{5-\sqrt{77}}{2}\right\}\)
b) PT có nghiệm kép \(\Leftrightarrow\Delta=0\Leftrightarrow\left(-m\right)^2-4.1.\left(2m-3\right)=0\)
\(\Leftrightarrow m^2-8m+12=0\Leftrightarrow\left(m-2\right)\left(m-6\right)=0\)
\(\Leftrightarrow\int^{m-2=0}_{m-6=0}\Leftrightarrow\int^{m=2}_{m=6}\)
Vậy với m = 2 và m = 6 thì PT có nghiệm kép.
c) PT có 2 nghiệm trái dấu \(\Leftrightarrow\int^{\Delta>0}_{2m-3<0}\Leftrightarrow\int^{m>6}_{m<\frac{3}{2}}\)(vô lí)
Vậy không có giá trị nào của m thỏa mãn PT có 2 nghiệm trái dấu.
d) Ta có: \(S=x_1+x_2=-\frac{b}{a}=-\frac{\left(-m\right)}{1}=m\)
\(\Rightarrow m=S^{\left(1d\right)}\)
\(P=x_1x_2=\frac{c}{a}=\frac{2m-3}{1}=2m-3\)
\(\Rightarrow2m-3=P\Rightarrow2m=P+3\Rightarrow m=\frac{P+3}{2}^{\left(2d\right)}\)
Từ \(\left(1d\right)\&\left(2d\right)\)
\(\Rightarrow S=\frac{P+3}{2}\Rightarrow2S=P+3\)
\(\Rightarrow P+3-2S=0\)
\(\Rightarrow x_1x_2+3-2\left(x_1+x_2\right)=0\)
\(\Rightarrow x_1x_2-2x_1-2x_2+3=0\)
Đây là hệ thức giữa 2 nghiệm không phụ thuộc vào m.
e) PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow m>6\)
Để pt có 2 nghiệm trái dấu thì : P <0 hay c/a < 0
Hay : (-1) /m-4 < 0 <=> 1/m-4 .(-1) <0
<=> -1 (m-4) < 1.1 <=> -m +4 < 1 => m > 3 ( 1 )
Mặt khác ta có : |x1| = |x2|
=> x1 = - x2
=> x1 + x2 = 0
=> 2(m-1)>0
=> m>1 (2)
Vậy suy ra : m >3 ( từ (1) và (2) )
Có gì sai góp ý nha
Lời giải:
a) Để pt có nghiệm thì:
\(\Delta'=(m+1)^2-(m^2-4m+5)\geq 0\)
\(\Leftrightarrow 6m-4\geq 0\Leftrightarrow m\geq \frac{2}{3}\)
b) PT có 2 nghiệm phân biệt \(\Leftrightarrow \Delta'=6m-4>0\Leftrightarrow m> \frac{2}{3}(*)\)
Gọi $x_1,x_2$ là 2 nghiệm của pt. Theo định lý Vi-et:
\(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=m^2-4m+5\end{matrix}\right.\)
Để \(x_1,x_2>0\Leftrightarrow \left\{\begin{matrix} x_1+x_2=2(m+1)>0\\ x_1x_2=m^2-4m+5>0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m>-1\\ (m-2)^2+1>0\end{matrix}\right.\Leftrightarrow m>-1\)
Kết hợp với $(*)$ suy ra \(m> \frac{2}{3}\)
c)
\(|x_1|=|x_2|\) và $x_1,x_2$ trái dấu nhau
\(\Leftrightarrow x_1+x_2=0\)
\(\Leftrightarrow 2(m+1)=0\Leftrightarrow m=-1\)
Kết hợp với điều kiện $(*)$ ta thấy $m=-1$ không thỏa mãn, tức là không tồn tại $m$