Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-m\right)\)
\(=\left(2m-2\right)^2+4m\)
\(=4m^2-8m+4+4m=4m^2-4m+4\)
\(=4m^2-4m+1+3=\left(2m-1\right)^2+3>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-2\left(m-1\right)\right]}{1}=2\left(m-1\right)=2m-2\\x_1x_2=\dfrac{c}{a}=-\dfrac{m}{1}=-m\end{matrix}\right.\)
\(x_1+x_2+2x_1x_2=2m-2+\left(-2m\right)=-2\)
=>\(x_1+x_2+2\cdot x_1\cdot x_2\) là hệ thức không phụ thuộc vào m
b: Để phương trình có đúng 1 nghiệm âm thì nghiệm còn lại sẽ lớn hơn hoặc bằng 0
=>a*c<=0
=>1*(-m)<=0
=>-m<=0
=>m>=0
c: Để \(\left\{{}\begin{matrix}\left|x_1\right|=\left|x_2\right|\\x_1\cdot x_2< 0\end{matrix}\right.\) thì \(x_1=-x_2\)
=>\(x_1+x_2=0\)
=>2(m-1)=0
=>m-1=0
=>m=1
d: \(\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\sqrt{\left(2m-2\right)^2-4\cdot1\left(-m\right)}\)
\(=\sqrt{4m^2-8m+4+4m}\)
\(=\sqrt{4m^2-4m+4}\)
\(=\sqrt{\left(2m-1\right)^2+3}>=\sqrt{3}\forall m\)
Dấu '=' xảy ra khi 2m-1=0
=>\(m=\dfrac{1}{2}\)
a) Thay \(m=-5\) vào PT ta được:
\(x^2-\left(-5\right)x+2.\left(-5\right)-3=0\)
\(\Rightarrow x^2+5x-10-3=0\)
\(\Rightarrow x^2+5x-13=0\)
\(\Delta=5^2-4.1.\left(-13\right)=25+52=77>0\)
PT có 2 nghiệm phân biệt:
\(x_1=-\frac{5+\sqrt{77}}{2}\)
\(x_2=-\frac{5-\sqrt{77}}{2}\)
Vậy với m = -5 thì PT có nghiệm là \(S=\left\{-\frac{5+\sqrt{77}}{2};-\frac{5-\sqrt{77}}{2}\right\}\)
b) PT có nghiệm kép \(\Leftrightarrow\Delta=0\Leftrightarrow\left(-m\right)^2-4.1.\left(2m-3\right)=0\)
\(\Leftrightarrow m^2-8m+12=0\Leftrightarrow\left(m-2\right)\left(m-6\right)=0\)
\(\Leftrightarrow\int^{m-2=0}_{m-6=0}\Leftrightarrow\int^{m=2}_{m=6}\)
Vậy với m = 2 và m = 6 thì PT có nghiệm kép.
c) PT có 2 nghiệm trái dấu \(\Leftrightarrow\int^{\Delta>0}_{2m-3<0}\Leftrightarrow\int^{m>6}_{m<\frac{3}{2}}\)(vô lí)
Vậy không có giá trị nào của m thỏa mãn PT có 2 nghiệm trái dấu.
d) Ta có: \(S=x_1+x_2=-\frac{b}{a}=-\frac{\left(-m\right)}{1}=m\)
\(\Rightarrow m=S^{\left(1d\right)}\)
\(P=x_1x_2=\frac{c}{a}=\frac{2m-3}{1}=2m-3\)
\(\Rightarrow2m-3=P\Rightarrow2m=P+3\Rightarrow m=\frac{P+3}{2}^{\left(2d\right)}\)
Từ \(\left(1d\right)\&\left(2d\right)\)
\(\Rightarrow S=\frac{P+3}{2}\Rightarrow2S=P+3\)
\(\Rightarrow P+3-2S=0\)
\(\Rightarrow x_1x_2+3-2\left(x_1+x_2\right)=0\)
\(\Rightarrow x_1x_2-2x_1-2x_2+3=0\)
Đây là hệ thức giữa 2 nghiệm không phụ thuộc vào m.
e) PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow m>6\)
a)Với m=-3
\(pt\Leftrightarrow2\left(4x+1\right)=0\)
\(\Leftrightarrow4x+1=0\)
\(\Leftrightarrow x=-\frac{1}{4}\)
a
x1 + x2 = 2(m-1)
x1x2 = m-3
=> \(\frac{x_1+x_2}{2}\) + 1 = x1x2 + 3
=> x1 + x2 + 2 = 2x1x2 + 6
=> x1 + x2 - 2x1x2 - 4 = 0
b
2 nghiệm bằng nhau về giá trị tuyệt đối và trái dấu
<=>
x1x2 < 0
x1 + x2 = 0
<=>
2(m-1) = 0
m - 3 < 0
<=>
m = 1