K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2016

Nhẩm nghiệm ta được x = 2 là nghiệm của pt

Theo sơ đồ Hoc-ne ta được: x3 - 5x2 + (2x + 5)x - 4m + 2 = (x - 2)(x2 - 3x + 2m - 1) = 0

Đặt x2 - 3x + 2m - 1 là pt (*)

Để pt đề cho có 3 nghiệm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 2

\(\Rightarrow\hept{\begin{cases}\Delta>0\\2^2-3.2+2m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}13-8m>0\\2m-3\ne0\end{cases}\Rightarrow}\hept{\begin{cases}m< \frac{13}{8}\\m\ne\frac{3}{2}\end{cases}}}\)

                                           Vậy \(m< \frac{13}{8}\) và \(m\ne\frac{3}{2}\) thì pt đề cho có 3 nghiệm phân biệt

10 tháng 7 2016

sơ đồ hoocs ne là j v

22 tháng 9 2020

a) \(x^3-5x^2+\left(2m+5\right)x-4m+2=0\left(1\right)\)\(\Leftrightarrow\left(x-2\right)\left(x^2-3x+2m-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x^2-3x+2m-1=0\left(2\right)\end{cases}}\)

Để phương trình (1)  có 3 nghiệm phân biệt thì phương trình (2) có 2 nghiệm phân biệt khác 2

Điều kiện là: \(\hept{\begin{cases}\Delta>0\\4-6+2m-1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}13-8m>0\\2m\ne3\end{cases}\Leftrightarrow\frac{3}{2}\ne}m< \frac{13}{8}}\)

b) Ta có 3 nghiệm của phương trình (1) là x1=2;x2;x3 trong đó x2;x3 là 2 nghiệm của phương trình (2)

Khi đó \(x_1^2+x_2^2+x_3^2=11\Leftrightarrow4+\left(x_2+x_3\right)^2-2x_2x_3=11\Leftrightarrow\left(x_2+x_3\right)^2-2x_2x_3=7\left(3\right)\)

Áp dụng định lý  Vi-ét đối với phương trình (2) ta có : \(\hept{\begin{cases}x_2+x_3=3\\x_2x_3=2m-1\end{cases}}\)

Vậy (3) \(\Leftrightarrow9-2\left(2m-1\right)=7\Leftrightarrow m=1\left(TM\text{Đ}K\right)\)

Vậy m=1

NV
27 tháng 3 2022

a. Phương trình có 2 nghiệm phân biệt khi:

\(\Delta=\left(2m-1\right)^2-4\left(m^2-1\right)=5-4m>0\)

\(\Rightarrow m< \dfrac{5}{4}\)

b. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=m^2-1\end{matrix}\right.\)

\(\left(x_1-x_2\right)^2=x_1-3x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=x_1-3x_2\)

\(\Leftrightarrow\left(2m-1\right)^2-4\left(m^2-1\right)=x_1-3x_2\)

\(\Leftrightarrow x_1-3x_2=5-4m\)

Kết hợp hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1-3x_2=5-4m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m-1\\4x_2=6m-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+1}{2}\\x_2=\dfrac{3m-3}{2}\end{matrix}\right.\)

Thế vào \(x_1x_2=m^2-1\)

\(\Rightarrow\left(\dfrac{m+1}{2}\right)\left(\dfrac{3m-3}{2}\right)=m^2-1\)

\(\Leftrightarrow m^2-1=0\Rightarrow m=\pm1\) (thỏa mãn)

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0

a: \(\text{Δ}=\left(2m+1\right)^2-4m\left(m+3\right)\)

\(=4m^2+4m+1-4m^2-12m\)

\(=-8m+1\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow-8m+1>0\)

\(\Leftrightarrow-8m>-1\)

hay \(m< \dfrac{1}{8}\)

Đề sai rồi bạn