Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhẩm nghiệm ta được x = 2 là nghiệm của pt
Theo sơ đồ Hoc-ne ta được: x3 - 5x2 + (2x + 5)x - 4m + 2 = (x - 2)(x2 - 3x + 2m - 1) = 0
Đặt x2 - 3x + 2m - 1 là pt (*)
Để pt đề cho có 3 nghiệm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 2
\(\Rightarrow\hept{\begin{cases}\Delta>0\\2^2-3.2+2m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}13-8m>0\\2m-3\ne0\end{cases}\Rightarrow}\hept{\begin{cases}m< \frac{13}{8}\\m\ne\frac{3}{2}\end{cases}}}\)
Vậy \(m< \frac{13}{8}\) và \(m\ne\frac{3}{2}\) thì pt đề cho có 3 nghiệm phân biệt
a) Ta có : \(\Delta'=\left(m+1\right)^2-\left(m^2+4m+3\right)=-2m-2\)
Để pt có 2 nghiệm phân biêt \(\Leftrightarrow\Delta'>0\Leftrightarrow m< -1\)
b) Theo hệ thức Viet \(\hept{\begin{cases}S=x_1+x_2=-2\left(m+1\right)\\P=x_1x_2=m^2+4m+3\end{cases}}\)
\(\Rightarrow A=m^2+4m+3+4\left(m+1\right)=m^2+4m+3+4m+4=m^2+8m+7\)
c) Ta có : \(A=m^2+8m+7=m^2+8m+16-9=\left(m+4\right)^2-9\ge-9\)
Dấu " = " xảy ra khi <=> m = -4 ( tm m < -1 )
Vậy minA = -9 tại m = -4
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)
nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)
\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)
\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)
Dấu \(=\)xảy ra khi \(m=-1\).
a) \(x^3-5x^2+\left(2m+5\right)x-4m+2=0\left(1\right)\)\(\Leftrightarrow\left(x-2\right)\left(x^2-3x+2m-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x^2-3x+2m-1=0\left(2\right)\end{cases}}\)
Để phương trình (1) có 3 nghiệm phân biệt thì phương trình (2) có 2 nghiệm phân biệt khác 2
Điều kiện là: \(\hept{\begin{cases}\Delta>0\\4-6+2m-1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}13-8m>0\\2m\ne3\end{cases}\Leftrightarrow\frac{3}{2}\ne}m< \frac{13}{8}}\)
b) Ta có 3 nghiệm của phương trình (1) là x1=2;x2;x3 trong đó x2;x3 là 2 nghiệm của phương trình (2)
Khi đó \(x_1^2+x_2^2+x_3^2=11\Leftrightarrow4+\left(x_2+x_3\right)^2-2x_2x_3=11\Leftrightarrow\left(x_2+x_3\right)^2-2x_2x_3=7\left(3\right)\)
Áp dụng định lý Vi-ét đối với phương trình (2) ta có : \(\hept{\begin{cases}x_2+x_3=3\\x_2x_3=2m-1\end{cases}}\)
Vậy (3) \(\Leftrightarrow9-2\left(2m-1\right)=7\Leftrightarrow m=1\left(TM\text{Đ}K\right)\)
Vậy m=1