K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>căn 2x1=x2-1

=>2x1=x2^2-2x2+1

=>x2^2-2(x1+x2)+1=0

=>x2^2-2(2m+1)+1=0

=>x2^2=4m+2-1=4m+1

=>\(x_2=\pm\sqrt{4m+1}\)

=>\(x_1=2m+1\pm\sqrt{4m+1}\)

x1*x2=m^2-m

=>m^2-m=4m+1\(\pm2m+1\)

=>m^2-5m-1=\(\pm2m+1\)

TH1: m^2-5m-1=2m+1

=>m^2-7m-2=0

=>\(m=\dfrac{7\pm\sqrt{57}}{2}\)

TH2: m^2-5m-1=-2m-1

=>m^2-3m=0

=>m=0; m=3

4 tháng 6 2021

\(\Delta^'=\left(-1\right)^2-\left(m-1\right)=2-m\)

Để PT có nghiệm thì: \(m\le2\)

Khi đó theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=m-1\end{cases}}\)

Ta có: \(x_1^4-x_1^3=x_2^4-x_2^3\)

\(\Leftrightarrow\left(x_1^4-x_2^4\right)-\left(x_1^3-x_2^3\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2\right)-\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left[2\left(x_1^2+x_2^2\right)-x_1^2-x_1x_2-x_2^2\right]=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left[4-3\left(m-1\right)\right]=0\)

Nếu \(x_1-x_2=0\Rightarrow x_1=x_2=1\Rightarrow m=1\left(tm\right)\)

Nếu \(4-3\left(m-1\right)=0\Rightarrow m=\frac{7}{3}\left(ktm\right)\)

Vậy m = 1

1 tháng 2 2022

undefined

1 tháng 2 2022

Phương trình có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow1-m\ge0\Leftrightarrow m\le1\)

Theo hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m\end{matrix}\right.\) (1)

Ta có: \(\dfrac{1}{x^2}+\dfrac{1}{x^2}=1\Leftrightarrow\dfrac{x^2_1+x^2_2}{x^2_1x^2_2}=1\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}=1\) (2)

Từ (1) và (2) \(\Rightarrow4-2m=m^2\Leftrightarrow m^2+2m-4=0\)

\(\Delta'=1+4=5\Rightarrow\sqrt{\Delta'}=\sqrt{5}\Rightarrow\left[{}\begin{matrix}m=-1+\sqrt{5}\left(\text{loại}\right)\\m=-1-\sqrt{5}\left(\text{nhận}\right)\end{matrix}\right.\)

Vậy \(m=-1-\sqrt{5}\)

=>căn 2x1=x2-1

=>2x1=x2^2-2x2+1

=>x2^2-2(x1+x2)+1=0

=>x2^2-2(2m+1)+1=0

=>x2^2=4m+2-1=4m+1

=>\(x_2=\pm\sqrt{4m+1}\)

=>\(x_1=2m+1\pm\sqrt{4m+1}\)

x1*x2=m^2-m

=>m^2-m=4m+1\(\pm2m+1\)

=>m^2-5m-1=\(\pm2m+1\)

TH1: m^2-5m-1=2m+1

=>m^2-7m-2=0

=>\(m=\dfrac{7\pm\sqrt{57}}{2}\)

TH2: m^2-5m-1=-2m-1

=>m^2-3m=0

=>m=0; m=3

13 tháng 4 2018

\(x^2-mx-2=0\)

có \(\Delta=\left(-m\right)^2-4.\left(-2\right)=m^2+8>0\forall m\)

theo định lí vi - ét \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=-2\end{cases}}\)

theo bài ra \(2x_1-x^2_1-x_2^2+2x_2\)

\(=2\left(x_1+x_2\right)-\left(x^2_1+x_2^2\right)\)

\(=2\left(x_1+x_2\right)-\left[\left(x_1+x_2\right)^2-2x_1.x_2\right]\)

\(=2m-\left[m^2-2.\left(-2\right)\right]\)

\(=2m-\left(m^2+4\right)\)

\(=2m-m^2-4\)

\(=-\left(m^2-2m+4\right)\)

\(=-\left[\left(m-1\right)^2+3\right]\)

13 tháng 4 2018

Điều kiện để phương trình có 2 nghiệm phân biệt thì tự làm nha.

Áp dụng vi-et ta được

\(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-2\end{cases}}\)

\(\Rightarrow P=2\left(x_1+x_2\right)-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\)

\(=2m-\left(m^2+4\right)=-3-\left(m-1\right)^2\le-3\)

NV
21 tháng 4 2023

\(\Delta=\left(m-1\right)^2+8>0;\forall m\) nên pt luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2\end{matrix}\right.\)

\(\left(1-\dfrac{2}{x_1+1}\right)^2+\left(1-\dfrac{2}{x_2+1}\right)^2=1\)

\(\Leftrightarrow\left(\dfrac{x_1-1}{x_1+1}\right)^2+\left(\dfrac{x_2-1}{x_2+1}\right)^2=1\)

\(\Leftrightarrow\left(\dfrac{x_1-1}{x_1+1}+\dfrac{x_2-1}{x_2+1}\right)^2-2\left(\dfrac{x_1-1}{x_1+1}\right)\left(\dfrac{x_2-1}{x_2+1}\right)=1\)

\(\Leftrightarrow\left(\dfrac{\left(x_1-1\right)\left(x_2+1\right)+\left(x_1+1\right)\left(x_2-1\right)}{\left(x_1+1\right)\left(x_2+1\right)}\right)^2-2\left(\dfrac{x_1x_2-\left(x_1+x_2\right)+1}{x_1x_2+x_1+x_2+1}\right)=1\)

\(\Leftrightarrow\left(\dfrac{2x_1x_2-2}{x_1x_2+x_1+x_2+1}\right)^2-2\left(\dfrac{x_1x_2-\left(x_1+x_2\right)+1}{x_1x_2+x_1+x_2+1}\right)=1\)

\(\Leftrightarrow\left(\dfrac{-6}{m-2}\right)^2+2\left(\dfrac{m}{m-2}\right)=1\) 

\(\Leftrightarrow36\left(\dfrac{1}{m-2}\right)^2+4\left(\dfrac{1}{m-2}\right)+1=0\)

Pt trên vô nghiệm nên ko tồn tại m thỏa mãn yêu cầu

NV
21 tháng 4 2023

Tới đó đặt \(\dfrac{1}{m-2}=t\) là thành 1 pt bậc 2 bình thường, bấm máy thấy nó vô nghiệm là đủ kết luận rồi em

1 tháng 9 2018

a) để phương trình có 2 nghiệm : \(\Leftrightarrow\left\{{}\begin{matrix}m-3\ne0\\\Delta'\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-3\ne0\\\left(m+2\right)^2-\left(m-3\right)\left(m+1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\6m+7\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{7}{6}\end{matrix}\right.\)

thay \(x_1=2\) vào phương trình ta có :

\(4\left(m-3\right)-4\left(m+2\right)+m+1=0\Leftrightarrow m=19\)

áp dụng hệ thức vi ét ta có : \(x_1+x_2=\dfrac{2\left(m+2\right)}{m-3}=\dfrac{2\left(21\right)}{16}=\dfrac{21}{8}\)

\(\Rightarrow x_2=\dfrac{21}{8}-x_1=\dfrac{21}{8}-2=\dfrac{5}{8}\)

vậy ....................................................................................................

b) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+2\right)}{m-3}\\x_1x_2=\dfrac{m+1}{m-3}\end{matrix}\right.\)

ta có : \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=10\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=10\Leftrightarrow\dfrac{2\left(m+2\right)}{m-3}:\dfrac{m+1}{m-3}=10\)

\(\Leftrightarrow\dfrac{2m+4}{m+1}=10\Leftrightarrow2m+4=10m+10\Leftrightarrow m=\dfrac{-3}{4}\left(L\right)\)

vậy không có m thỏa mãn điều kiện bài toán .

1 tháng 9 2018

câu 2) a) để phương trình có 2 nghiệm cùng dấu \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\Delta'\ge0\\p>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\left(m+1\right)^2-\left(m-2\right)\left(m-1\right)\ge0\\\dfrac{m-1}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\5m-1\ge0\\\left(m-1\right)\left(m-2\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m\ge\dfrac{1}{5}\\\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>2\) vậy \(m>2\)

b) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2\left(m+1\right)}{m-2}\\x_1x_2=\dfrac{m-1}{m-2}\end{matrix}\right.\)

ta có : \(x_1^3+x_2^3=64\Leftrightarrow\left(x_1+x_2\right)^3-3\left(x_1x_2\right)\left(x_1+x_2\right)=64\)

\(\left(\dfrac{2m+2}{2-m}\right)^3+6\left(\dfrac{m-1}{m-2}\right)\left(\dfrac{m+1}{m-2}\right)=64\)

\(\Leftrightarrow\dfrac{\left(-2m-2\right)^3}{\left(m-2\right)^3}+\dfrac{6\left(m-1\right)\left(m+1\right)\left(m-2\right)}{\left(m-2\right)^3}=64\)

\(\Leftrightarrow\dfrac{-8m^3-24m^2-24m-8+6m^2-12m^3-6m+12}{m^2-6m^2+12m-8}=64\)

\(\Leftrightarrow\dfrac{-20m^3-18m^2-30m+4}{m^3-6m^2+12m-8}=64\)

\(\Leftrightarrow84m^3-402m^2+798m-516=0\)

giải nốt nha .

9 tháng 4 2023

a: Khi m = -4 thì:

\(x^2-5x+\left(-4\right)-2=0\)

\(\Leftrightarrow x^2-5x-6=0\)

\(\Delta=\left(-5\right)^2-5\cdot1\cdot\left(-6\right)=49\Rightarrow\sqrt{\Delta}=\sqrt{49}=7>0\)

Pt có 2 nghiệm phân biệt:

\(x_1=\dfrac{5+7}{2}=6;x_2=\dfrac{5-7}{2}=-1\)

9 tháng 4 2023

Anh làm câu b nữa ạ, sửa câu b \(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{3}{2}\)

9 tháng 5 2017

1/

Phương trình \(x^2-2\left(k+3\right)x+2k-1=0\left(1\right)\)

Xét phương trình (1) có:

\(\Delta=4\left(k+3\right)^2-4\left(2k-1\right)\)

= \(4k^2+24k+36-8k+4\)

= \(4k^2+16k+40\)

= \(\left(2k+4\right)^2+24\)

Ta có: \(\left(2k+4\right)^2\ge0\) với mọi k

\(\Rightarrow\left(2k+4\right)^2+24>0\) với mọi k

\(\Rightarrow\Delta>0\) với mọi k

\(\Rightarrow\) Phương trình (1) có 2 nghiệm phân biệt với mọi k

Áp dụng hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2k+6\\x_1.x_2=2k-1\end{matrix}\right.\)

Theo đề bài ta có:

\(\dfrac{1}{x_1}+\dfrac{1}{x_2}+\dfrac{3}{x_1x_2}=2\)

\(\Leftrightarrow\dfrac{x_2+x_1+3}{x_1x_2}=\dfrac{2x_1x_2}{x_1x_2}\)

\(\Leftrightarrow x_1+x_2+3-2x_1x_2=0\)

\(\Leftrightarrow2k+6+3-2\left(2k-1\right)=0\)

\(\Leftrightarrow-2k=-11\)

\(\Leftrightarrow k=\dfrac{11}{2}\)

Vậy để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\dfrac{1}{x_1}+\dfrac{1}{x_2}+\dfrac{3}{x_1x_2}=2\) thì \(k=\dfrac{11}{2}\)

9 tháng 5 2017

bài 2 có chút j đó sai...