K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2019

Trước hết ta có thể giả sử q=2 

* Nếu n là số nguyên dương lẻ thì ta có: 

\(p^n+2^n=\left(p+2\right)\left(\frac{p^n+2^n}{p+2}\right)=r^2\)  mà do r là số nguyên tố nên ta phải có: 

\(p+2=\frac{p^n+2^n}{p+2}=r\)

Nếu n là số lẻ và \(n\ge3\) thì ta có: \(\frac{p^n+2^n}{p+2}>p+2\)    từ đây ta dẫn đến một điều vô lý. Do đó, ta phải có: n=1.

* Nếu n là số chẵn, đặt n=2k  , \(k\in Z^+\) thì từ đây ta có: \(\left(p^k\right)^2+\left(2^k\right)^2=r^2\)  mà dễ thấy p  , r phải phân biệt nên đây là bộ ba Phythagore nên tồn tại  x,y:(x,y)  = 1 và x,y khác tính chẵn lẻ thỏa mãn: 

\(\hept{\begin{cases}p^k=2xy\\2^k=x^2-y^2\end{cases}}\)     hoặc \(\hept{\begin{cases}2^k=2xy\\p^k=x^2-y^2\end{cases}}\)

Mà p là số nguyên tố nên trường hợp này không xảy ra.

Vậy ta phải có: n=1

Chúc bạn học tốt !!!

8 tháng 5 2018

bn hay thật 

8 tháng 5 2018

Đây toán 6 nha bạn

với n =2   =>  \(n^2+4=8 loại\)

với n =3   => \(n^2+16= 24 loại\)

với n =4  =>  \(n^2+4=20 loại\)

vói n =5  =>  ( các bn tự thử) THõa mãn

Với n>5 => n có dạng 5k+1,5k+2,5k+3,5K+4

Sau đó tự thử nha


 

4 tháng 2 2017

Mình chỉ biết là theo định lí Fermat lớn thì pt \(x^n+y^n=z^n\) ko có nghiệm nguyên khác 0 khi \(n\ge3\) chứng đừng nói tới số nguyên tố.

29 tháng 5 2018

Do \(p^4+q^4=r^4\)mà p, q, r là số nguyên tố nên r > q, r > p

\(\Rightarrow\)Chắc chắn r là số lẻ.

\(\Rightarrow\)p hoặc q là số chẵn.

Giả sử p chẵn \(\Rightarrow\)p = 2.

Ta có:\(16+q^4=r^4\)

\(\Leftrightarrow r^4-q^4=16\)

\(\Leftrightarrow\left(r^2-q^2\right)\left(r^2+q^2\right)=16\)

\(\Rightarrow r^2-q^2,r^2+q^2\inƯ\left(16\right)\)

Ta lại có: \(r^2-q^2< r^2+q^2\) 

\(\Rightarrow\hept{\begin{cases}r^2-q^2=1\\r^2+q^2=16\end{cases}\Leftrightarrow\hept{\begin{cases}r=\frac{\sqrt{34}}{2}\\q=\frac{\sqrt{30}}{2}\end{cases}}}\)(Không thỏa mãn)

Vậy không có giá trị nào của p, q, r thỏa mãn yêu cầu đề bài.

24 tháng 3 2020

khó quá . mik dở phần số nguyên tố lắm.

24 tháng 3 2020

\(1,\text{Nếu p;q cùng lẻ thì:}7pq^2+p\text{ chẵn};q^3+43p^3+1\text{ lẻ}\Rightarrow\text{có ít nhất 1 số chẵn}\)

\(+,p=2\Rightarrow14q^2+2=q^3+345\Leftrightarrow14q^2=q^3+343\)

\(\Leftrightarrow q^2\left(14-q\right)=343\text{ đến đây thì :))}\)

\(+,q=2\Rightarrow29p=9+43p^3\Leftrightarrow29p-43p^3=9\text{loại}\)

\(+,p=q=2\Rightarrow7.8+2=8+43.8+1\left(\text{loại}\right)\)

21 tháng 4 2020

Ta có p^2-p=q^2-3q+2 <=> p(p-1)=(q-1)(q-2) (*)

Từ (*) suy ra p|(q-1)(q-2). Do p là snt nên p|(q-1) hoặc p|(q-2)
+) Xét p|(q-1). Đặt q=kp+1 (k E N*) thay vào (*):

kp(kp-1)=p(p-1) <=>k(kp-1)=p-1 <=> pk^2 -k-p+1=0.<=>(p-1)[p(k+1)-1]=0

=>k=1 (Do p(k+1)-1>0).

Lúc này q=p+1>=3. Do vậy p=2. q=3 (Do p;q nguyên tố) suy ra p^2+q^2=13 là snt
Xét p|(q-2) đặt q=tp+2 (t E N*) . Thay vào (*) biến đổi tương tự ta được . (t+1)[p(k-1)+1]=0 (vô lý nên loại)

Vậy đpcm

25 tháng 9 2020

p- q= p - 3q + 2 

4p- 4q= 4p - 12q + 8

4p- 4p + 1 = 4q- 12q + 9

(2p - 1)2 = (2q - 3)2

Mà 2p - 1 >0(p nguyên tố);2q - 3 >0(q nguyên tố)

Do đó 2p - 1 = 2q - 3 <=> p + 1 = q

Ta có q > 3 (vì p > 2) nên q lẻ, do đó p chẵn

=> p = 2. Nên q = p + 1 = 3

Vậy p+ q2 = 2+ 3= 4 + 9 = 13 là số nguyên tố