K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 4 2022

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)

Ta có:

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=12^2-2.4=136\)

\(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=12+2\sqrt{4}=16\Rightarrow\sqrt{x_1}+\sqrt{x_2}=4\)

\(\Rightarrow T=\dfrac{136}{4}=34\)

8 tháng 4 2022

pt đã cho có \(\Delta'=\left(-6\right)^2-1.4=32>0\)

\(\Rightarrow\)pt đã cho có 2 nghiệm phân biệt 

Áp dụng hệ thức Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=12\\x_1x_2=4\end{cases}}\)

Ta có \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=12^2-2.4=136\)

Mặt khác \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=12+2\sqrt{4}=16\)\(\Rightarrow\sqrt{x_1}+\sqrt{x_2}=4\)

\(\Rightarrow T=\frac{136}{4}=34\)

4 tháng 4 2017

a) 2x2 – 17x + 1 = 0 có a = 2, b = -17, c = 1

∆ = (-17)2 – 4 . 2 . 1 = 289 – 8 = 281

x1 + x2 = = ; x1x2 =

b) 5x2 – x + 35 = 0 có a = 5, b = -1, c = -35

∆ = (-1)2 – 4 . 5 . (-35) = 1 + 700 = 701

x1 + x2 = = ; x1x2 = = -7

c) 8x2 – x + 1 = 0 có a = 8, b = -1, c = 1

∆ = (-1)2 – 4 . 8 . 1 = 1 - 32 = -31 < 0

Phương trình vô nghiệm nên không thể điền vào ô trống được.

d) 25x2 + 10x + 1 = 0 có a = 25, b = 10, c = 1

∆ = 102 – 4 . 25 . 1 = 100 - 100 = 0

x1 + x2 = = ; x1x2 =



4 tháng 4 2017

a) 2x2 – 17x + 1 = 0 có a = 2, b = -17, c = 1

∆ = (-17)2 – 4 . 2 . 1 = 289 – 8 = 281

x1 + x2 = = ; x1x2 =

b) 5x2 – x + 35 = 0 có a = 5, b = -1, c = -35

∆ = (-1)2 – 4 . 5 . (-35) = 1 + 700 = 701

x1 + x2 = = ; x1x2 = = -7

c) 8x2 – x + 1 = 0 có a = 8, b = -1, c = 1

∆ = (-1)2 – 4 . 8 . 1 = 1 - 32 = -31 < 0

Phương trình vô nghiệm nên không thể điền vào ô trống được.

d) 25x2 + 10x + 1 = 0 có a = 25, b = 10, c = 1

∆ = 102 – 4 . 25 . 1 = 100 - 100 = 0

x1 + x2 = = ; x1x2 =

1 tháng 1 2020

a.

Ta co:

\(\orbr{\begin{cases}x^2-2x-3=0\left(1\right)\left(x\ge0\right)\\x^2+2x-3=0\left(2\right)\left(x< 0\right)\end{cases}}\)

(1)\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\left(l\right)\\x=3\left(n\right)\end{cases}}\)

(2)\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(l\right)\\x=-3\left(n\right)\end{cases}}\)

b.

Ta lai co:

\(\orbr{\begin{cases}x^2-2x+1-4a^2=0\left(3\right)\left(x\ge0\right)\\x^2+2x+1-4a^2=0\left(4\right)\left(x< 0\right)\end{cases}}\)

Xet (3)

De phuong trinh dau co 4 nghiem thi PT(3) co nghiem

\(\Rightarrow\Delta^`>0\)

\(\Leftrightarrow4a^2>0\)

\(\Leftrightarrow a>0\)

\(\Rightarrow x_1=1+2a;x_2=1-2a\)

Tuong tu

(4)

\(a>0\)

\(\Rightarrow x_3=-1+2a;x_4=-1-2a\)

\(\Rightarrow S=\left(1+2a\right)^2+\left(1-2a\right)^2+\left(-1+2a\right)^2+\left(-1-2a\right)^2\)

\(=2\left(1+2a\right)^2+2\left(1-2a\right)^2\)

\(\Rightarrow S< +\infty\)

28 tháng 4 2020

a) \(x_1^2+x_2^2=23\)

\(\Leftrightarrow x_1^2+2x_1x_2+x_2^2-2x_1x_2=23\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=23\)

\(\Leftrightarrow5^2-2\left(m+4\right)=23\)

<=> m=-3

b) \(x_1^3+x_2^3=35\)

\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=35\)

\(\Leftrightarrow\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=35\)

\(\Leftrightarrow5\left[5^2-3\left(m+4\right)\right]=35\)

<=> m=2

c) \(\left|x_2-x_1\right|=3\)

\(\Leftrightarrow\left(\left|x_2-x_1\right|\right)^2=3^2\)

\(\Leftrightarrow x_1^2-2x_1x_2+x_1^2=3^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=9\)

<=> m=0

28 tháng 4 2020

ĐK để pt có hai nghiệm phân biệt là: \(\Delta>0\Leftrightarrow25-4\left(m+4\right)>0\Leftrightarrow m< \frac{9}{4}\) ( @@) 

Gọi \(x_1;x_2\) là hai nghiệm của phương trình 

Theo định lí Viet ta có: \(x_1+x_2=5;x_1.x_2=m+4\)

a) \(x_1^2+x_2^2=23\)

<=> \(x_1^2+x_2^2+2x_1x_2=23+2x_1x_2\)

<=> \(\left(x_1+x_2\right)^2=23+2x_1x_2\)

=> \(25=23+2\left(m+4\right)\)

<=>m = -3 ( thỏa mãn @@) 

b) \(x_1^3+x_2^3=35\)

<=> \(\left(x_1+x_2\right)^3-3\left(x_1+x_2\right)x_1x_2=35\)

=> \(5^3-3.5.\left(m+4\right)=35\)

<=> m = 2 ( thỏa mãn @@) 

c) \(\left|x_2-x_1\right|=3\)

<=> \(\left(x_1-x_2\right)^2=9\)

<=> \(\left(x_1+x_2\right)^2-4x_1x_2=9\)

=> \(5^2-4\left(m+4\right)=9\)

<=> m = 0 ( thỏa mãn @@)

2 tháng 3 2022

\(\left(-5\right)^2-4.\left(-3\right)\left(-2\right)=25-24=1>0\)

Suy ra pt luôn có 2 nghiệm phân biệt

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-5}{3}\\x_1x_2=\dfrac{2}{3}\end{matrix}\right.\)

\(M=x_1+\dfrac{1}{x_1}+\dfrac{1}{x_2}+x_2\\ =\left(x_1+x_2\right)+\dfrac{x_1+x_2}{x_1x_2}\\ =\dfrac{-5}{3}+\dfrac{-5}{3}:\dfrac{2}{3}\\ =\dfrac{-5}{3}-\dfrac{5}{2}\\ =\dfrac{-25}{6}\)

-3x2-5x-2=0

Ta có :-3-(-5)-2=0

=>Phương trình có 2 nghiệm \(\hept{\begin{cases}x_1=-1\\x_2=\frac{-5}{3}\end{cases}}\)

Thay x1;x2 vào M ta được:

M=(-1)+\(\frac{1}{-1}\)+\(\frac{1}{\frac{-5}{3}}\)+\(\frac{-5}{3}\)

=(-1)+(-1)+\(-\frac{3}{5}+-\frac{5}{3}\)

=\(-\frac{64}{15}\)

1 tháng 6 2020

Ta có: \(x^2-5x+3=0\)

Áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=3\end{cases}}\)

a) \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=5^2-2.3=19\)

b) \(B=x_1^3+x_2^3=\left(x_1+x_2\right)^3-3\left(x_1+x_2\right)x_1x_2=5^3-3.5.3=80\)

c) \(C=\left|x_1-x_2\right|\)>0

=> \(C^2=x_1^2+x_2^2-2x_1x_2=19-2.3=13\)

=> C = căn 13

d) \(D=x_2+\frac{1}{x_1}+x_1+\frac{1}{x_2}=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}=5+\frac{5}{3}=5\frac{5}{3}\)

e) \(E=\frac{1}{x_1+3}+\frac{1}{x_2+3}=\frac{\left(x_1+x_2\right)+6}{x_1x_2+3\left(x_1+x_2\right)+9}=\frac{5+6}{3+3.5+9}=\frac{11}{27}\)

g) \(G=\frac{x_1-3}{x_1^2}+\frac{x_2-3}{x_2^2}=\left(\frac{1}{x_1}+\frac{1}{x_2}\right)-3\left(\frac{1}{x_1^2}+\frac{1}{x_2^2}\right)\)

\(=\frac{x_1+x_2}{x_1x_2}-3\frac{x_1^2+x_2^2}{x_1^2.x_2^2}=\frac{5}{3}-3.\frac{19}{3^2}=-\frac{14}{3}\)