Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x-mx+2m-1=0
\(\Leftrightarrow x\left(2-m\right)=1-2m\left(1\right)\)
*Nếu \(m=2\)thay vào (1) ta được:
\(x\left(2-2\right)=1-2\cdot2\Leftrightarrow0x=-3\)
Với \(m=\frac{1}{2}\) ,pt trên vô nghiệm.
*Nếu \(m\ne2\)thì phương trình (1) có nghiệm \(x=\frac{1-2m}{2-m}\)
Vậy \(m\ne2\)thì phương trình có nghiệm duy nhất \(x=\frac{1-2m}{2-m}\)
b)c) mình biến đổi thôi, phần lập luận bạn tự lập luận nhé
b)\(mx+4=2x+m^2\Leftrightarrow mx-2x=m^2-4\Leftrightarrow x\left(m-2\right)=\left(m-2\right)\left(m+2\right)\)
*Nếu \(m\ne2\).....pt có ngiệm x=m+2
*Nếu \(m=2\)....pt có vô số nghiệm
Vậy ....
c)\(\left(m^2-4\right)x+m-2=0\Leftrightarrow\left(m-2\right)\left(m+2\right)x=-\left(m-2\right)\)
Nếu \(m=2\).... pt có vô số nghiệm
Nếu \(m=-2\)..... pt vô nghiệm
Nếu \(m\ne\pm2\).... pt có nghiệm \(x=-m-2\)
Để nghiệm \(x=-m-2\)dương \(\Leftrightarrow m+2< 0\Leftrightarrow m< -2\ne\pm2\)
Vậy m<-2
Nhận xét: Phương trình bậc 3 luôn có ít nhất 1 nghiệm thực .
Để phương trình bậc 3 có đúng 2 nghiệm phân biệt thì phương trình bậc 3 phải tách được thành:
( x - a) (x - b)2 với a khác b
Đối với bài trên chúng ta làm như sau:
\(x^3-2mx^2+\left(m^2+5m\right)x-2m^2-2m-8=0\)
<=> \(\left(x^3-8\right)-\left(2mx^2-5mx+2m\right)+\left(m^2x-2m^2\right)=0\)
<=> \(\left(x-2\right)\left(x^2+2x+4\right)-m\left(2x-1\right)\left(x-2\right)+m^2\left(x-2\right)=0\)
<=> \(\left(x-2\right)\left(x^2+2x+4-2mx+m+m^2\right)=0\)
<=> \(\left(x-2\right)\left(x^2+2\left(1-m\right)x+4+m+m^2\right)=0\)
<=> \(\left(x-2\right)\left[\left(x^2+2\left(1-m\right)x+\left(1-m\right)^2\right)+4+m+m^2-\left(1-m\right)^2\right]=0\)
<=> \(\left(x-2\right)\left[\left(x+1-m\right)^2+4+m+m^2-\left(1-m\right)^2\right]=0\)
Phương trình ba đầu có 2 nghiệm phân biệt
đk cần là: \(4+m+m^2-\left(1-m\right)^2=0\Leftrightarrow3+3m=0\Leftrightarrow m=-1\)
Khi đó phương trình có hai nghiệm 2 và -2 khác nhau
Vậy m = - 1 thỏa mãn
( Lớp 8 chưa học đen ta nên giải hơi lủng)
Thay x=-1 vào (*), ta được:
\(-m^2+4=2m+4\)
\(\Leftrightarrow-m^2-2m=4-4\)
\(\Leftrightarrow-m\left(m+2\right)=0\)
\(\Leftrightarrow-m=0\)hoặc \(m+2=0\)
\(\Leftrightarrow m=0\)hoặc \(m=-2\)
Vậy khi m = 0, m = -2 thì (*) có nghiệm duy nhất là x = -1