Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x-mx+2m-1=0
\(\Leftrightarrow x\left(2-m\right)=1-2m\left(1\right)\)
*Nếu \(m=2\)thay vào (1) ta được:
\(x\left(2-2\right)=1-2\cdot2\Leftrightarrow0x=-3\)
Với \(m=\frac{1}{2}\) ,pt trên vô nghiệm.
*Nếu \(m\ne2\)thì phương trình (1) có nghiệm \(x=\frac{1-2m}{2-m}\)
Vậy \(m\ne2\)thì phương trình có nghiệm duy nhất \(x=\frac{1-2m}{2-m}\)
b)c) mình biến đổi thôi, phần lập luận bạn tự lập luận nhé
b)\(mx+4=2x+m^2\Leftrightarrow mx-2x=m^2-4\Leftrightarrow x\left(m-2\right)=\left(m-2\right)\left(m+2\right)\)
*Nếu \(m\ne2\).....pt có ngiệm x=m+2
*Nếu \(m=2\)....pt có vô số nghiệm
Vậy ....
c)\(\left(m^2-4\right)x+m-2=0\Leftrightarrow\left(m-2\right)\left(m+2\right)x=-\left(m-2\right)\)
Nếu \(m=2\).... pt có vô số nghiệm
Nếu \(m=-2\)..... pt vô nghiệm
Nếu \(m\ne\pm2\).... pt có nghiệm \(x=-m-2\)
Để nghiệm \(x=-m-2\)dương \(\Leftrightarrow m+2< 0\Leftrightarrow m< -2\ne\pm2\)
Vậy m<-2
Phương trình <=> (x - m)2 + (m + 1)|x - m| + 1 - m2 = 0
Đặt X = |x - m| \(\ge\)0 , ta có :
X2 + (m + 1).X + 1 - m2 = 0 (2)
Với một nghiệm X > 0 ta có hai nghiệm x = \(\pm x+m\)
Với X = 0 , ta có x = m
Vậy (1) có nghiệm duy nhất <=> (2) có nghiệm
X1 \(\le\)X2 = 0 \(\Leftrightarrow\hept{\begin{cases}P=0\\S\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}1-m^2=0\\-m-1\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=\pm1\\m\ge-1\end{cases}}\)
\(\Leftrightarrow m=\pm1\)