Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BDT Bunhiacopki, ta có
\(1^2\le\left(x+3y\right)^2\le\left(1^2+3^2\right)\left(X^2+Y^2\right)\)
\(\Rightarrow\)\(X^2+Y^2\)\(\ge\frac{1}{10}\).Dấu bằng xảy ra
\(\Leftrightarrow x=3y\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{10}\\y=\frac{1}{10}\end{cases}}\)
x^2+x-p=0
=>x^2+x=p
=>x(x+1)=p
Do p là số nguyên tố,mà số nguyên tố chỉ có 2 ước duy nhất là 1 và chính nó
x,x+1 là 2 số tự nhiên liên tiếp=>p=2
2=1.2=(-1).(-2)
với x(x+1)=1.2=>x=1
với x(x+1)=-1.-2=>x=-2
vậy x={1,-2}
đề sai rồi, phải là:x2-(m+1)x+2m-3=0
delta=[-(m+1)]2-4(2m-3)=m2+2m+1-8m+12=m2-6m+13=(m-3)2+4>0 nên pt có 2 nghiệm phân biêt x1,x2
áp dụng Vi-ét ta có: x1+x2=m+1; x1x2=2m-3
nên A=(x1)2+(x2)2+2x1x2-2x1x2=(x1+x2)2-2x1x2=(m+1)2-2(2m-3)=m2+2m+1-4m+6=(m-1)2+6
GTNN=6
khi m=1
Đề hiển thị lỗi. Bạn xem lại nhé.