K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2019

Hoành độ giao điểm của (P) và (d) là nghiệm của pt:

 \(x^2=2\left(m-1\right)x+m^2+2m\)

\(\Leftrightarrow x^2-2\left(m-1\right)x-m^2-2m=0\)

\(\Delta'=\left(m-1\right)^2+m^2+2m=m^2-2m+1+m^2+2m\)

                                                           \(=2m^2+1>0\forall m\)

Nên (P) luôn cắt (d) tại 2 điểm phân biệt

8 tháng 5 2017

b. ta có PT hoành độ :
      1/2 x2 = -mx+3
<=>x2+2mx-6=0

18 tháng 2 2020

Sửa đề (d) y=2(m-1)x+m^2+2m

a, đường thẳng d đi qua điểm M(1;3) => \(x_M=1;y_M=3\)

Ta có; \(y_M=2\left(m-1\right)x_M+m^2+2m\)

=>\(3=2\left(m-1\right).1+m^2+2m\)

<=>\(m^2+2m+2m-2-3=0\)

<=>\(m^2+4m-5=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-5\end{cases}}\)

b, Phương trình hoành độ giao điểm của (P) và (d) :

\(x^2=2\left(m-1\right)x+m^2+2m\) 

<=>\(x^2-2\left(m-1\right)x-m^2-2m=0\)(1)

\(\Delta'=\left[-\left(m-1\right)\right]^2-1.\left(-m^2-2m\right)=m^2-2m+1+m^2+2m=2m^2+1>0\)

Vậy pt (1) luôn có 2 nghiệm phân biệt => (d) luôn cắt (P) tại 2 điểm phân biệt A và B

c, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m^2-2m\end{cases}}\)

\(x_1^2+x_2^2+6x_1x_2>2017\)

<=> \(\left(x_1+x_2\right)^2+4x_1x_2-2017>0\)

<=>\(4\left(m-1\right)^2+4\left(-m^2-2m\right)-2017>0\)

<=>\(4m^2-8m+4-4m^2-8m-2017>0\)

<=>\(-16m-2013>0\)

<=>\(m< \frac{-2013}{16}\)

26 tháng 3 2022

Hoành độ giao điểm (P) ; (d) tm pt 

\(\frac{1}{2}x^2+mx+m-1=0\Leftrightarrow x^2+2mx+2m-2=0\)

\(\Delta'=m^2-\left(2m-2\right)=m^2+2m+2=\left(m+1\right)^2+1>0\)

Vậy (P) cắt (d) tại 2 điểm pb 

30 tháng 5 2017

Phương trình hoành độ giao điểm của (P) và (d) là:

        x2 = (2m - 1)x - (2m - 2)    (*)

<=>  x2 - (2m - 1)x + 2m + 2 = 0

     \(\Delta\)= b2 - 4ac = (1 - 2m)2 - 4.(2m + 2) = 4m2 - 4m + 1 - 8m - 8

                                                              = 4m2 - 12m - 7

     \(\Delta\)= b2 - 4ac = (-12)2 - 4.4.(-7) = 144 + 112 = 226 > 0

=> phương trình (*) luôn có nghiệm => (d) và (P) cắt nhau với mọi m.

30 tháng 5 2017
đã trả lời ở lần đăng câu hỏi tr rồi nhé
30 tháng 5 2017

lần đăng câu hỏi trước khác

30 tháng 5 2017

Xét phương trình hoành độ giao điểm của (P) và (d) có :

x2= (2m-1)-(2m-2)  <=> x2 = 2m-1-21+2  <=> x2 = 1\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

phương trình luôn có nghiêm với mọi giá trị của m,vậy P luôn cắt d Tại 2 điểm phân biệt với mọi m