Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm của (P) và (d) : \(\frac{1}{4}.x^2=mx+1\) (1)
<=> x2 = 4mx + 4 <=> x2 - 4mx - 4 = 0
\(\Delta\)' = (-2m)2 + 4 = 4m2 + 4 \(\ge\) 4 > 0 với mọi m
=> (1) luôn có 2 nghiệm phân biệt
Vậy (P) luôn cắt (d) tại 2 điểm phân biệt
b) Gọi 2 nghiệm đó là x1; x2
Theo hệ thức Vi ét có:
x1 + x2 = 4m
x1 x2 = - 4 < 0
=> x1; x2 trái dấu .
A; B là 2 giao điểm => A (x1; mx1 + 1); B(x2; mx2 + 1) . Giả sử x1 < 0 < x2
+) A; B nằm về hai phía của trục tung do x1; x2 trái dấu .
Gọi H; K lần lượt là hình chiếu của A; B xuống Ox => H(x1; 0); K(x2; 0)
Khi đó S OAB = S AHKB - SAHO - SBKO
S AHKB = (AH + BK). HK : 2 = (mx1 + 1 +mx2 + 1 ) .(- x1 + x2) : 2 = \(\frac{\left(m\left(x_1+x_2\right)+2\right)\left(x_2-x_1\right)}{2}=\frac{m\left(x_2^2-x_1^2\right)+2.\left(x_2-x_1\right)}{2}\)
SAHO = AH.HO : 2 = (mx1 + 1). (-x1) : 2 = \(\frac{-mx^2_1-x_1}{2}\)
SBKO = BK.KO : 2 = (mx2 + 1). x2 : 2 = \(\frac{mx^2_2+x_2}{2}\)
Vậy SOAB = \(\frac{m\left(x_2^2-x_1^2\right)+2.\left(x_2-x_1\right)}{2}\)- \(\frac{-mx^2_1-x_1}{2}\) - \(\frac{mx^2_2+x_2}{2}\)
= \(\frac{m\left(x_2^2-x_1^2\right)+2.\left(x_2-x_1\right)+m\left(x_1^2-x_2^2\right)+x_1-x_2}{2}=\frac{x_2-x_1}{2}\)
ta có: \(\left(x_2-x_1\right)^2=x_2^2-2x_2x_1+x_1^2=\left(x_1+x_2\right)^2-4x_1.x_2\)
= (4m)2 - 4.(-4) = 16m2 + 16
=> x2 - x1 = \(\sqrt{16m^2+16}=4.\sqrt{m^2+1}\)
Vậy SOAB = \(4.\sqrt{m^2+1}\)
CÁI ĐỀ NÀY
AI GIÚP TÔI ĐƯỢC KHÔNG CHIỀU MAI TỚ PHẢI NỘP ÙI PLEASE~~~~~!!
BÀI 3:Xác định tham số m để hàm số y=(m^2 - 4)x-5 nghịch biến
Xác định tham số m để hàm số y=(m^2 - 1)x+2 đồng biến với mọi x>0
BÀI 6 Cho đường thẳng (d) y=-x+2 và parabol P y=1/2.x^2
a)tìm giá trị m để điểm M(m;m-1) nằm trên (d).Với m vừa tìm được chứng tỏ điểm M không thuộc P
b) vẽ P và (d) trên cùng mặt phẳng tọa độ và tìm tọa độ giao điểm của
chúng
BÀI 4:
TRONG mặt phẳng tọa độ Oxy , cho parabol P: y=-x^2
a) vẽ đồ thị P
b) gọi A và B là hai điểm thuộc P có hoành độ lần lượt là 1 , -2 .Lập phuơng trình đường thẳng AB
c) tìm phương trình đường thẳng (d) song song với đường thẳng AB và tiếp xúc với P
a) Lập phương trình hoành độ giao điểm:
x2 = mx + 3
<=> x2 - mx - 3 = 0
Tọa độ (P) và (d) khi m = 2:
<=> x2 - 2x - 3 = 0
<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)
Tọa độ (P) và (d): A(3; 9) và B(-1; 1)
b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)
<=> (-m)2 - 4.1(-3) > 0
<=> m2 + 12 > 0 \(\forall m\)
Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)
<=> 2x2 + 2x1 = 3x1x2
<=> 2(x2 + x1) = 3x1x2
Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)
<=> 2m = 3(-3)
<=> 2m = -9
<=> m = -9/2
aPt hoành độ giao điểm là x2=mx+1
<=>x2-mx-1=0
\(_{\Delta}\)=m2-4(-1)=m2+4\(\ge0\)\(\forall m\inℝ\)
=>đpcm
b viet=>x1x2=-1 => A và B nằm ở hai hướng khác nhau
tính (d) giao trục OY tại K
=>Soab=(OK.x1+OK.x2)/2 sau đó tính ra
a) Thay x=4 vào (P), ta được:
\(y=\dfrac{4^2}{2}=\dfrac{16}{2}=8\)
Thay x=4 và y=8 vào (d), ta được:
\(m\cdot4-m+2=8\)
\(\Leftrightarrow3m=6\)
hay m=2
Vậy: m=2
b) Phương trình hoành độ giao điểm của (P) và (d) là:
\(\dfrac{x^2}{2}=mx-m+2\)
\(\Leftrightarrow\dfrac{1}{2}x^2-mx+m-2=0\)
\(\Delta=\left(-m\right)^2-4\cdot\dfrac{1}{2}\cdot\left(m-2\right)\)
\(=m^2-2\left(m-2\right)\)
\(=m^2-2m+4\)
\(=m^2-2m+1+3\)
\(=\left(m-1\right)^2+3>0\forall m\)
Do đó: (P) và (d) luôn cắt nhau tại hai điểm phân biệt(Đpcm)
Hoành độ giao điểm (P) ; (d) tm pt
\(\frac{1}{2}x^2+mx+m-1=0\Leftrightarrow x^2+2mx+2m-2=0\)
\(\Delta'=m^2-\left(2m-2\right)=m^2+2m+2=\left(m+1\right)^2+1>0\)
Vậy (P) cắt (d) tại 2 điểm pb