K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2017

Phương trình đường thẳng (d) có dạng: y = kx + b

Vì (d) đi qua I(0;1) nên

\(\Rightarrow1=0k+b\Rightarrow b=1\)

\(\Rightarrow\left(d\right):y=kx+1\)

Tọa độ hoành độ giao điểm của (P) và (d) là

\(-x^2=kx+1\Leftrightarrow x^2+kx+1=0\)

Trung điểm AB nằm trên trục tung nên có hoành độ là 0 hay x = 0

Ta có: \(\frac{x_A+x_B}{2}=0\Leftrightarrow\frac{-k}{2}=0\Leftrightarrow k=0\)

AH
Akai Haruma
Giáo viên
9 tháng 1 2017

Lời giải:

Gọi đường thẳng $(d)$ có dạng $y=kx+b$. Vì \(I(0;1)\in (d)\Rightarrow b=1\Rightarrow (d):y=kx+1\)

Phương trình hoành độ giao điểm \(x^2+kx+1=0\).

Theo đó, nếu \(A,B=(d)\cap (P)\) thì áp dụng hệ thức Viet ta có: \(x_1+x_2=-k\)

Trung điểm của $AB$ là $I$ nằm trên trục trung khi \(0=x_I=\frac{x_1+x_2}{2}=\frac{-k}{2}\Rightarrow k=0\)

Do đó $k=0$ là kết quả cần tìm.

AH
Akai Haruma
Giáo viên
9 tháng 1 2017

Bạn cứ tự nhiên =))))

10 tháng 1 2017

jup mk cau hoi nay vs cac cau