K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
9 tháng 1 2017
Lời giải:
Gọi đường thẳng $(d)$ có dạng $y=kx+b$. Vì \(I(0;1)\in (d)\Rightarrow b=1\Rightarrow (d):y=kx+1\)
Phương trình hoành độ giao điểm \(x^2+kx+1=0\).
Theo đó, nếu \(A,B=(d)\cap (P)\) thì áp dụng hệ thức Viet ta có: \(x_1+x_2=-k\)
Trung điểm của $AB$ là $I$ nằm trên trục trung khi \(0=x_I=\frac{x_1+x_2}{2}=\frac{-k}{2}\Rightarrow k=0\)
Do đó $k=0$ là kết quả cần tìm.
Phương trình đường thẳng (d) có dạng: y = kx + b
Vì (d) đi qua I(0;1) nên
\(\Rightarrow1=0k+b\Rightarrow b=1\)
\(\Rightarrow\left(d\right):y=kx+1\)
Tọa độ hoành độ giao điểm của (P) và (d) là
\(-x^2=kx+1\Leftrightarrow x^2+kx+1=0\)
Trung điểm AB nằm trên trục tung nên có hoành độ là 0 hay x = 0
Ta có: \(\frac{x_A+x_B}{2}=0\Leftrightarrow\frac{-k}{2}=0\Leftrightarrow k=0\)