Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(d\right):y=kx+b\)
(d) đi qua N(-1;-2) nên ta có: \(-k+b=-2\Leftrightarrow k=b+2\)
\(\Rightarrow\left(d\right):y=\left(b+2\right)x+b\)
a)Hoành độ của A và B là 2 nghiệm của pt: \(x^2+\left(b+2\right)x+b=0\)
\(\Delta=\left(b+2\right)^2-4b=b^2+4>0\)
Vậy đường thẳng (d) luôn cắt (P) tại 2 điểm A\(\left(x_1;y_1\right)\) và B\(\left(x_2;y_2\right)\)
A, B nằm về 2 phía trục tung=>\(x_1,x_2\) trái dấu
Theo hệ thức Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-b-2\left(1\right)\\x_1x_2=b\left(2\right)\end{matrix}\right.\)
Từ (1) suy ra \(b< 0\Leftrightarrow k-2< 0\Leftrightarrow k< 2\)
b)Ta có: \(y_1=-x_1^2;y_2=-x_2^2\)
\(\Rightarrow x_1+y_1+x_2+y_2=x_1-x_1^2+x_2-x_2^2\\ =\left(x_1+x_2+2x_1x_2\right)-\left(x_1+x_2\right)^2\\ =\left(-b-2+2b\right)-\left(b+2\right)^2\\ =b-2-b^2-4b-4\\ =-b^2-3b-6=-\left(b+\dfrac{3}{2}\right)^2-\dfrac{15}{4}\)
\(\Rightarrow\)S đạt GTLN khi\(b=-\dfrac{3}{2}\Leftrightarrow k=\dfrac{1}{2}\)
a) Hoành độ giao điểm của ( P ) và ( d ) là nghiệm phương trình:
\(x^2=2mx-2m+3\) (2)
<=> \(x^2-2mx+2m-3=0\)
Có: \(\Delta'=m^2-\left(2m-3\right)=m^2-2m+3=\left(m-1\right)^2+2>0\)với mọi m
=> Với mọi m phương trình (2) luôn có hai nghiệm phân biết
=> Với mọi m (d) luôn cắt ( P ) tại hai điểm phân biệt
___________
c) Để phương trình (1) có nghiệm điều kiện là: \(\Delta'=\left(k-1\right)^2-\left(k-3\right)=k^2-3k+4=\left(k-\frac{3}{2}\right)^2+\frac{7}{4}>0\)với mọi m
=> Phương trình (1) có 2 nghiệm \(x_1;x_2\)với mọi m
Áp dụng định lí viets ta có: \(\hept{\begin{cases}x_1+x_2=2\left(k-1\right)\\x_1.x_2=k-3\end{cases}}\)mà \(x_1=\frac{5}{3}x_2\)
nên : \(\frac{5}{3}x_2+x_2=2k-2\)<=> \(\frac{8}{3}x_2=2k-2\)<=> \(x_2=\frac{3}{4}\left(k-1\right)\)
khi đó: \(x_1=\frac{5}{3}x_2=\frac{5}{4}\left(k-1\right)\)
Suy ra \(x_1.x_2=k-3\)<=> \(\frac{15}{16}\left(k-1\right)^2=k-3\)
<=> \(15k^2-46k+63=0\)(3)
có: \(\Delta\)<0
=> (3) vô nghiệm
=> không tồn tại k
Phương trình đường thẳng (d) có dạng: y = kx + b
Vì (d) đi qua I(0;1) nên
\(\Rightarrow1=0k+b\Rightarrow b=1\)
\(\Rightarrow\left(d\right):y=kx+1\)
Tọa độ hoành độ giao điểm của (P) và (d) là
\(-x^2=kx+1\Leftrightarrow x^2+kx+1=0\)
Trung điểm AB nằm trên trục tung nên có hoành độ là 0 hay x = 0
Ta có: \(\frac{x_A+x_B}{2}=0\Leftrightarrow\frac{-k}{2}=0\Leftrightarrow k=0\)
a) PT hoành dộ giao điểm d và (P):
x2-mx-m-1=0 (1). \(\Delta=\left(m+2\right)^2\)
d tiếp xúc với (P) <=> m=-2 tìm được x=-1
Tọa độ điểm A(-1;1)
b) Chỉ ra (1) luôn có nghiệm x=-1; x=m+1
Điều kiện để 2 giao điểm khác phía trục tung là:m >-1
Th1: với \(\hept{\begin{cases}x_1=-1\\x_2=m+1\end{cases}}\)tìm được m=\(\frac{-10}{3}\)(loại)
Th2: Với \(\hept{\begin{cases}x_1=m+1\\x_2=-1\end{cases}}\)tìm được m=0(tm)