K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1 1. Cho parabol (P): y=\(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2\). Giả sử (P) cắt Ox tại 2 điểm có hoành độ x1 , x2 thỏa mãn điều kiện x1+x2 \(\le\) 4. Tìm GTLN và GTNN của biểu thức sau: P = \(x^{_13}+x^{_23}+x_1x_2\left(3x_1+3x_2+8\right)\) 2. Giải phương trình: \(\sqrt{x^4-x^2+4}+\sqrt{x^4+20x^2+4}=7x\) Câu 2: 1. Cho parabol (P): \(y=x^2-2mx+m^2-2m+4\). Tìm tất cả các giá trị thực của m để (P) cắt Ox tại 2 điểm...
Đọc tiếp

Câu 1

1. Cho parabol (P): y=\(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2\). Giả sử (P) cắt Ox tại 2 điểm có hoành độ x1 , x2 thỏa mãn điều kiện x1+x2 \(\le\) 4. Tìm GTLN và GTNN của biểu thức sau: P = \(x^{_13}+x^{_23}+x_1x_2\left(3x_1+3x_2+8\right)\)

2. Giải phương trình: \(\sqrt{x^4-x^2+4}+\sqrt{x^4+20x^2+4}=7x\)

Câu 2:

1. Cho parabol (P): \(y=x^2-2mx+m^2-2m+4\). Tìm tất cả các giá trị thực của m để (P) cắt Ox tại 2 điểm có hoành độ không âm x1, x2. Tính theo m giá trị của biểu thức \(P=\sqrt{x_1}+\sqrt{x_2}\) và tìm giá trị nhỏ nhất của P.

2. Giải bất phương trình: \(\frac{3-2\sqrt{x^2+3x+2}}{1-2\sqrt{x^2-x+1}}>1\)

Câu 3:

1. Cho hàm số \(y=f\left(x\right)=mx^2-2\left(m-1\right)x+m-2\). Tìm m để trên đồ thị của \(f\left(x\right)\)có 2 điểm \(A\left(x_A;y_A\right),B\left(x_B,y_B\right)\)thỏa mãn: \(2x_A-y_A-3=0,2x_B-y_B-3=0\)\(AB=\sqrt{5}\)

2. Giải phương trình: \(x\sqrt{x}-1=\left(\sqrt{x}-1\right).\sqrt{2x^2-3x+2}\)

Câu 4:

1. Cho parabol (P): \(y=x^2-\left(m-1\right)x+\left(2m^2-8m+6\right)\). Giả sử (P) cắt Ox tại 2 điểm có hoành độ \(x_1,x_2\). Tìm GTLN và GTNN của biểu thức \(P=\left|x_1x_2-2\left(x_1+x_2\right)\right|\)

2. Giải bất phương trình: \(\left(2x-5-\sqrt{x^2-x-25}\right)\sqrt{x^2-5x+6}\le0\)

Câu 5:

1. Cho parabol (P): \(y=-x^2\) và đường thẳng d đi qua điểm I (0; -1). và có hệ số góc là k. Gọi A và B là các giao điểm của (P) và d. Giả sử A, B lần lượt có hoành độ là \(x_1,x_2\)

a. Tìm k để trung điểm của đoạn AB nằm trên trục tung.

b. Tìm GTNN của biểu thức: \(P=\left|x^3_1-x^3_2\right|\)

2. Giải phương trình: \(1+\left(6x+2\right)\sqrt{2x^2-1}=2\left(5x^2+4x\right)\)

0
8 tháng 2 2020

PT có 2 nghiệm \(x_1,x_2\Leftrightarrow\)\(\ge0\Leftrightarrow\)\(4\left(m-1\right)^2-4\left(2m^2-3m+1\right)\ge0\)\(\Leftrightarrow0\le m\le1\)

Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m^2-3m+1\end{matrix}\right.\)

Suy ra \(P=\left|2m-2+2m^2-3m+1\right|=\left|2m^2-m-1\right|\)

Đến đây giải nốt nha

9 tháng 2 2020

Phạm Minh Quang giải giúp mình đi bạn , mình ko hiểu

mọi người giúp giải mấy bài sau với ạ ! cám ơn trước. 1. Cho hàm số \(y=x^2-\left(m+2\right)x+m-3\) ( m là tham số). Tìm m để đồ thị của h/s đã cho cắt trục hoành tại 2 điểm pb có hoành độ \(x_1,x_2\) thỏa \(\dfrac{x_1-m-1}{x_2}+\dfrac{x_2-m-1}{x_1}=-26\) 2. Cho parabol (P): \(y=x^2\), trên (P) lấy 2 điểm \(A_1,A_2\) sao cho góc A1OA2 = 90 độ ( O là gốc tọa độ). Hình chiếu vuông góc của A1,A2 lên trục hoành...
Đọc tiếp

mọi người giúp giải mấy bài sau với ạ !
cám ơn trước.

1. Cho hàm số \(y=x^2-\left(m+2\right)x+m-3\) ( m là tham số). Tìm m để đồ thị của h/s đã cho cắt trục hoành tại 2 điểm pb có hoành độ \(x_1,x_2\) thỏa \(\dfrac{x_1-m-1}{x_2}+\dfrac{x_2-m-1}{x_1}=-26\)

2. Cho parabol (P): \(y=x^2\), trên (P) lấy 2 điểm \(A_1,A_2\) sao cho góc A1OA2 = 90 độ ( O là gốc tọa độ). Hình chiếu vuông góc của A1,A2 lên trục hoành lần lượt là B1,B2. Chứng minh: OB1.OB2=1

3. Cho parabol (P) có pt y=x2-3x+1 và đường thẳng d: y=(2m+1)x+2 và điểm M(3;3). Tìm m để d cắt (P) tại 2 điểm pb A, B sao cho tam giác MAB vuông cân tại M.

4. Cho hàm số f(x) = ax2+bx+c, biết rằng đồ thị hàm số f(x) cắt trục hoành tại 2 điểm pb thuộc đoàn [0;1]. Tìm giá trị lớ nhất và nhỏ nhất của biểu thức \(M=\dfrac{\left(a-b\right)\left(2a-c\right)}{a\left(a-b+c\right)}\)

5. Cho hàm số bậc hai f(x) = ax2+bx+c (a khác 0).C/m : nếu f(x) \(\ge\) 0 với mọi x \(\in\)R thì 4a + c \(\ge\) 2b

0
30 tháng 1 2020

\(\Delta=4m^2+4m+1\)

phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow m\ne-\frac{1}{2}\)

theo hệ thức viete : \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1.x_2=-m-1\end{matrix}\right.\)

ta có : x12+x22=2

<=> (x1+x2)2-2x1x2-2=0

<=> 4m2+2m+2-2=0

<=> 4m2+2m=0

\(\Leftrightarrow\left[{}\begin{matrix}m=-\frac{1}{2}\\m=0\end{matrix}\right.\)

kết hợp với \(m\ne-\frac{1}{2}\)

=> m=0

18 tháng 12 2015

hs cat õ tai 2 diem phan biet =>y=0

=>pt<=>x2+2(m-1)x+m+4m-3=0

pt cat õ tai 2 diem phan biet =>(m-1)2-(m+4m-3)>0

<=> m2-7m+4>0

=>m>....  m<.....

ta co x1=x2+2

=> x1-x2=2     =>(x1-x2)2=4    <=>(x1+x2)2 -4x1x2=4

theo viet ta co x1+x2=.....     x1x2=..........

thay vao pt tren giai va ket hop nghiem

 

NV
29 tháng 4 2020

a/ \(\Delta'=1-m\ge0\Rightarrow m\le1\)

Để biểu thức xác định \(\Rightarrow f\left(0\right)\ne0\Rightarrow m\ne0\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m\end{matrix}\right.\)

Mặt khác do \(x_1;x_2\) là nghiệm của pt nên:

\(\left\{{}\begin{matrix}x_1^2-2x_1+m=0\\x_2^2-2x_1+m=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1^2-3x_1+m=-x_1\\x_2^2-3x_2+m=-x_2\end{matrix}\right.\)

Thay vào ta được:

\(-\frac{x_1}{x_2}-\frac{x_2}{x_1}\le2\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}+2\ge0\)

\(\Leftrightarrow\frac{x_1^2+x_2^2+2x_1x_2}{x_1x_2}\ge0\Leftrightarrow\frac{\left(x_1+x_2\right)^2}{x_1x_2}\ge0\)

\(\Leftrightarrow\frac{4}{m}\ge0\Rightarrow m>0\)

Vậy \(0< m\le1\)

b/ \(\Delta'=m^2-m-2\ge0\Rightarrow\left[{}\begin{matrix}m\ge2\\m\le-1\end{matrix}\right.\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m+2\end{matrix}\right.\)

\(x_1^3+x_2^3\le16\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-16\le0\)

\(\Leftrightarrow8m^3-6m\left(m+2\right)-16\le0\)

\(\Leftrightarrow4m^3-3m^2-6m-8\le0\)

\(\Leftrightarrow\left(m-2\right)\left(4m^2+5m+4\right)\le0\)

\(\Leftrightarrow m\le2\) (do \(4m^2+5m+4=4\left(m+\frac{5}{8}\right)^2+\frac{39}{16}>0;\forall m\))

Kết hợp ta được \(\left[{}\begin{matrix}m=2\\m\le-1\end{matrix}\right.\)