K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2024

Phương trình hoành độ giao điểm là:

\(x^2=\left(m-1\right)x+m+4\)

=>\(x^2-\left(m-1\right)x-\left(m+4\right)=0\)(1)

Để (P) cắt (d) tại hai điểm nằm về hai phía của trục tung thì phương trình (1) có hai nghiệm phân biệt trái dấu

=>\(a\cdot c< 0\)

=>\(1\cdot\left[-\left(m+4\right)\right]< 0\)

=>-(m+4)<0

=>m+4>0

=>m>-4

29 tháng 11 2024

ĐKXĐ: \(m\ne1\)

Phương trình hoành độ giao điểm cỉa (P) và (d):

\(x^2=\left(m-1\right)x+m+4\)

\(x^2-\left(m-1\right)x-m-4=0\)

\(\Delta=\left[-\left(m-1\right)\right]^2-4.1.\left(-m-4\right)\)

\(=m^2-2m+1+4m+16\)

\(=m^2+2m+17\)

\(=\left(m+1\right)^2+16>0\) (với mọi \(m\in R\) và \(m\ne1\))

Theo Vi-ét, ta có:

\(x_1.x_2=-m-4\)

Để (P) cắt (d) tại hai điểm nằm về hai phía của trục tung thì:

\(-m-4< 0\)

\(-m< 4\)

\(m>-4\)

Vậy \(m>-4\) thì (P) cắt (d) tại hai điểm nằm về hai phía của trục tung

Phương trình hoành độ giao điểm là:

\(x^2-\left(2m+1\right)x+m^2-1=0\)

\(\text{Δ}=\left(2m+1\right)^2-4\left(m^2-1\right)\)

\(=4m^2+4m+1-4m^2+4=4m+5\)

Để (P) cắt (d) tại hai điểm nằm về hai phía của trục tung thì \(m^2-1< 0\)

hay -1<m<1

25 tháng 9 2017

b) (d) cắt (P) tại 2 điểm A, B phân biệt nằm về 2 phía của trục tung khi và chỉ khi

Đề kiểm tra Toán 9 | Đề thi Toán 9

Khi đó 2 nghiệm của phương trình là:

Đề kiểm tra Toán 9 | Đề thi Toán 9
Đề kiểm tra Toán 9 | Đề thi Toán 9

Kẻ BB' ⊥ OM ; AA' ⊥ OM

Đề kiểm tra Toán 9 | Đề thi Toán 9

Ta có:

S A O M  = 1/2 AA'.OM ; S B O M  = 1/2 BB'.OM

Theo bài ra:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Do m > 0 nên m = 8

Vậy với m = 8 thì thỏa mãn điều kiện đề bài.

NM
21 tháng 3 2022

Xét phương trình hoành độ giao điểm 

\(x^2=\left(m-1\right)x+m+4\Leftrightarrow x^2-\left(m-1\right)x-m-4=0\text{ }\left(\text{*}\right)\)

để d cắt P tại hai điểm phân biệt nằm ở hai phía của trục tung thì phương trình (*) có hai nghiệm trái dấu

khi đó điều kiện \(\Leftrightarrow-m-4< 0\Leftrightarrow m>-4\)

24 tháng 3 2022

- Xét pt hoành độ gd....:

x2-(m-1)x-m-4=0 (1)

- để (P) cắt (d) tại 2 đm nằm về 2 phía của trục tung thì pt(1) có 2 nghiệm trái dấu nhau

\(\left\{{}\begin{matrix}\Delta=\left(m-1\right)^2-4\left(-m-4\right)>0\\P=x_1x_2=-m-4< 0\Leftrightarrow m>-4\end{matrix}\right.\)

Vậy với m>-4 thì ....

NV
18 tháng 3 2021

Pt hoành độ giao điểm: 

\(x^2=2x+m\Leftrightarrow x^2-2x-m=0\) (1)

(d) cắt (P) tại 2 điểm nằm về 2 phía trục tung khi và chỉ khi (1) có 2 nghiệm trái dấu

\(\Leftrightarrow ac< 0\Leftrightarrow-m< 0\Rightarrow m>0\)

a: PTHDGĐ là:

x^2-(m-1)x-(m^2+1)=0

a*c=-m^2-1<0

=>(P) luôn cắt (d) tại hai điểm phân biệt nằm về hai phía của trục Oy

b: |x1|+|x2|=2căn 2

=>x1^2+x2^2+2|x1x2|=8

=>(x1+x2)^2-2x1x2+2|x1x2|=8

=>(m-1)^2-2(-m^2+1)+2|-m^2-1|=8

=>(m-1)^2+2(m^2+1)+2(m^2+1)=8

=>m^2-2m+1+4m^2+4=8

=>5m^2-2m-3=0

=>5m^2-5m+3m-3=0

=>(m-1)(5m+3)=0

=>m=1 hoặc m=-3/5

PTHĐGĐ là:

x^2-2x+m-3=0

Để (P) cắt (d) hai điểm phân biệt nằm về hai phía của trục tung thì m-3<0

=>m<3

20 tháng 11 2017

Phương trình hoành độ giao điểm của d và (P): x 2 = (m + 2)x – m – 1

↔ x 2 − (m + 2)x + m + 1 = 0 (1)

(d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung khi và chỉ khi phương trình (1) có hai nghiệm phân biệt trái dấu ↔ ac < 0 ↔ m + 1 < 0

↔ m < −1

Vậy m < −1

Đáp án: A

5 tháng 1 2020

Phương trình hoành độ giao điểm x 2 = (m – 2)x + 3m ↔ x 2 − (m – 2)x − 3m = 0 (*)

Đường thẳng d cắt (P) tại hai điểm phân biệt nằm hai phía trục tung

↔ Phương trình (*) có hai nghiệm trái dấu

↔ ac < 0 ↔ −3m < 0 ↔ m > 0

Đáp án: D

10 tháng 6 2023

Vì đường thẳng (d) cắt (P) tại hai điểm nằm về phía của trục tung  nên phương trình sẽ có 2 nghiệm trái dấu

PT có 2 nghiệm trái dấu thì \(\left\{{}\begin{matrix}\Delta'>0\\P< 0\end{matrix}\right.\)

PT hoành độ giao điểm giữa ( P ) và ( d ) là \(x^2-2x+m-9=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=b'^2-ac=\left(-1\right)^2-1.\left(m-9\right)>0\\P=m-9< 0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-m+10>0\\m-9< 0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}m< 10\\m< 9\end{matrix}\right.\\ \Leftrightarrow m< 9\)

Vậy m < 9 thì đường thẳng (d) cắt (P) tại hai điểm nằm về phía của trục tung