K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2017

Phương trình hoành độ giao điểm của d và (P): x 2 = (m + 2)x – m – 1

↔ x 2 − (m + 2)x + m + 1 = 0 (1)

(d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung khi và chỉ khi phương trình (1) có hai nghiệm phân biệt trái dấu ↔ ac < 0 ↔ m + 1 < 0

↔ m < −1

Vậy m < −1

Đáp án: A

DD
5 tháng 6 2021

Phương trình hoành độ giao điểm (d) và (P) là: 

\(x^2=-\left(m+2\right)x-m-1\)

\(\Leftrightarrow x^2+\left(m+2\right)x+m+1=0\)(1) 

Để (d) cắt (P) tại hai điểm phân biệt thì phương trình (1) có hai nghiêm phân biệt. Khi đó: 

\(\Delta>0\Leftrightarrow\left(m+2\right)^2-4\left(m+1\right)=m^2>0\Leftrightarrow m\ne0\)

Với \(m\ne0\)phương trình (1) có hai nghiệm phân biệt \(x_1,x_2;x_1>x_2\).

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=-m-2\\x_1x_2=m+1\end{cases}}\)

Do hai điểm nằm khác phía với trục tung nên \(x_1,x_2\)trái dấu nên \(m+1< 0\Leftrightarrow m< -1\).

\(\sqrt{y_1}+\sqrt{y_2}=\sqrt{x_1^2}+\sqrt{x_2^2}=\left|x_1\right|+\left|x_2\right|=x_1-x_2=2\)(do hai điểm nằm khác phía với trục tung) 

\(\hept{\begin{cases}x_1+x_2=-m-2\\x_1-x_2=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1=\frac{-m}{2}\\x_2=\frac{-m-4}{2}\end{cases}}\)

\(x_1x_2=-\frac{m}{2}\left(\frac{-m-4}{2}\right)=\frac{m\left(m+4\right)}{4}=m+1\Leftrightarrow m=\pm2\).

Vậy \(m=-2\).

7 tháng 4 2022

pt hoành độ giao điểm của (P) và (d) là \(mx^2=-3x+1\)\(\Leftrightarrow mx^2+3x-1=0\)(*)

pt (*) có \(\Delta=3^2-4.m.\left(-1\right)=4m+9\)

Vậy để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta=4m+9>0\Leftrightarrow m>-\frac{9}{4}\Leftrightarrow\hept{\begin{cases}m>-\frac{9}{4}\\m\ne0\end{cases}}\)

Khi đó áp dụng định lí Vi-ét, ta có \(x_1x_2=-\frac{1}{m}\)

A và B nằm cùng phía với trục tung \(\Rightarrow x_1,x_2\)cùng dấu \(\Rightarrow x_1x_2>0\)\(\Rightarrow-\frac{1}{m}>0\)\(\Leftrightarrow\frac{1}{m}< 0\)\(\Leftrightarrow m< 0\)

Vậy để (d) cắt (P) tại 2 điểm phân biệt thỏa mãn yêu cầu đề bài thì \(-\frac{9}{4}< m< 0\)

AH
Akai Haruma
Giáo viên
14 tháng 7 2020

Cách khác câu 4 (dùng AM-GM và pp chọn điểm rơi)

Lấy $k>0$. Áp dụng BĐT AM-GM cho các số dương thì:

$kx+\frac{4}{x}\geq 4\sqrt{k}$

$k(1-x)+\frac{9}{1-x}\geq 6\sqrt{k}$

Cộng theo vế:

$k+y\geq 10\sqrt{k}\Leftrightarrow y_{\min}=10\sqrt{k}-k$

Dấu "=" xảy ra khi \(\left\{\begin{matrix} kx=\frac{4}{x}\\ k(1-x)=\frac{9}{1-x}\end{matrix}\right.\Rightarrow \frac{4}{x^2}=\frac{9}{(1-x)^2}\)

Kết hợp $1> x>0$ ta giải PT ra được $x=\frac{2}{5}$ nên $a+b=2+5=7$

AH
Akai Haruma
Giáo viên
14 tháng 7 2020

Câu 4:

$0< x< 1\Rightarrow x>0; 1-x>0$

Áp dụng BĐT Bunhiacopxky ta có:

\(\left(\frac{4}{x}+\frac{9}{1-x}\right)(x+1-x)\geq (2+3)^2\)

\(\Leftrightarrow y\geq 25\). Vậy $y_{\min}=25$. Dấu "=" xác định tại \(\frac{2}{x}=\frac{3}{1-x}\Leftrightarrow x=\frac{2}{5}\)

$\Rightarrow a=2; b=5\Rightarrow a+b=7$

28 tháng 3 2020

để (d) song song zới đường thẳng (d') 

=>\(\hept{\begin{cases}m+1=3\\-2m\ne4\end{cases}=>\hept{\begin{cases}m=2\\m\ne-2\end{cases}=>m=2}}\)

b)phương trình hoành độ giao điểm của (d) zà (P)

\(\frac{1}{2}x^2-\left(m+1\right)x+2m=0\Rightarrow x^2-2\left(m+1\right)x+4m=0\)

ta có \(\Delta=4\left(m+1\right)^2-4.4m=4\left(m^2+2m+1\right)-16m=4m^2-8m+4=4\left(m-1\right)^2\ge0\)

để d cắt P tại hai điểm phân biệt 

=>\(\Delta>0=>\left(m-1\right)^2>0=>m\ne1\)(1)

lại có \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m\end{cases}}\)

để 2 hoành độ dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}=>\hept{\begin{cases}2\left(m+1\right)>0\\4m>0\end{cases}=>\hept{\begin{cases}m>-1\\m>0\end{cases}\Rightarrow m>0}}\left(2\right)}\)

từ 1 zà 2 => m khác 1 , m lớn hơn 0 thì (d) cắt (P) tạ điểm phân biệt có hoành độ dương

9 tháng 6 2018

Đề max hài luôn :) 0 câu trả lời đăng làm gì nữa

AH
Akai Haruma
Giáo viên
29 tháng 3 2020

Lời giải:

PT hoành độ giao điểm:

$\frac{3}{4}x^2+\frac{3}{2}x-2m=0$

$\Leftrightarrow 3x^2-6x+8m=0(*)$

Để $(d)$ và $(P)$ cắt nhau tại 2 điểm phân biệt nằm bên phải trục tung thì $(*)$ phải có 2 nghiệm phân biệt dương.

\(\Leftrightarrow \left\{\begin{matrix} \Delta'=9-24m>0\\ x_1+x_2=2>0\\ x_1x_2=\frac{8m}{3}>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m< \frac{9}{24}\\ m>0\end{matrix}\right.\Leftrightarrow m\in (0; \frac{9}{24})\)

Câu 1: Cho hàm số y = (m -1)x - 2 ( m \(\ne\) 1 ), trong các câu sau câu nào đúng, câu nào sai: a, Hàm số luôn đồng biến \(\forall\) m \(\ne\) 1. b, Hàm số đồng biến khi m < 1. c, Đồ thị hàm số luôn cắt trục tung tại điểm -2 \(\forall\) m \(\ne\) 1. d, Đồ thị hàm số luôn đi qua điểm A ( 0; 2). Câu 2: Cho hàm số y = 2x + 1. Chọn câu trả lời đúng A. Đồ thị hàm số luôn đi qua điểm A ( 0;1) B. Điểm M ( 0;...
Đọc tiếp

Câu 1: Cho hàm số y = (m -1)x - 2 ( m \(\ne\) 1 ), trong các câu sau câu nào đúng, câu nào sai:

a, Hàm số luôn đồng biến \(\forall\) m \(\ne\) 1.

b, Hàm số đồng biến khi m < 1.

c, Đồ thị hàm số luôn cắt trục tung tại điểm -2 \(\forall\) m \(\ne\) 1.

d, Đồ thị hàm số luôn đi qua điểm A ( 0; 2).

Câu 2: Cho hàm số y = 2x + 1. Chọn câu trả lời đúng

A. Đồ thị hàm số luôn đi qua điểm A ( 0;1)

B. Điểm M ( 0; -1) luôn thuộc đồ thị hàm số.

C. Đồ thị hàm số luôn song song với đường thẳng y = 1 - x

D. Đồ thị hàm số luôn cắt trục hoành tại điểm có hoành độ bằng 1

Câu 3: Cho hàm số y = ( m + 1)x + m - 1. Kết luận nào sau đây là đúng?

A. Với m > 1, hàm số y là hàm số đồng biến

B. Với m > 1, hàm số y là hàm số nghịch biến

C. Với m = 0, đồ thị hàm số đi qua gốc tọa độ.

D. Với m = 2, đồ thị hàm số đi qua điểm có tọa độ ( \(-\frac{1}{2}\);1)

Câu 4: Hai đường thẳng y = ( 2 - \(\frac{m}{2}\))x + 1 và y = \(\frac{m}{2}\)x + 1 ( m là tham số) cùng đồng biến khi:

A. -2 < m < 0

B. m > 4

C. ) < m < 4

D. -4 < m < -2

Câu 5: Cho ba đường thẳng ( d1): y = x - 1; (d2): y= 2 - \(\frac{1}{2}\)x; ( d3): y = 5 + x. So với đường thẳng nằm nganng thì:

A. Độ dốc của đường thẳng d1 lớn hơn độ dốc của đường thẳng d2

B. Độ dốc của đường thẳng d1 lớn hơn độ dốc của đường thẳng d3

C. Độ dốc của đường thẳng d3 lớn hơn độ dốc của đường thẳng d2

D. Độ dốc của đường thẳng d1 và d3 như nhau

1
8 tháng 11 2019

Minh An, Nguyễn Ngọc Linh, tth, Phạm Lan Hương, Vũ Minh Tuấn, Lê Nguyễn Ngọc Hà, Linh Phương, Duyên, Toàn Nguyễn Đức, Akai Haruma, Băng Băng 2k6, No choice teen, Nguyễn Lê Phước Thịnh, HISINOMA KINIMADO, Lê Thị Thục Hiền, Nguyễn Huy Tú, Nguyễn Huy Thắng, Nguyễn Thanh Hằng, Hồng Phúc Nguyễn, Mysterious Person, soyeon_Tiểubàng giải, Võ Đông Anh Tuấn, Phương An, Trần Việt Linh,....