Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Phản chứng. Giả sử tồn tại số nguyên tố $p$ nào đó để $8p-1, 8p+1$ cùng là số nguyên tố.
Nếu $p=3$ thì $8p+1$ không phải số nguyên tố (trái giả sử)
Nếu $p$ chia $3$ dư $1$. Đặt $p=3k+1$ với $k\in\mathbb{N}^*$
Khi đó $8p+1=8(3k+1)+1=3(8k+3)\vdots 3$. Mà $8p+1>3$ nên $8p+1$ không thể là số nguyên tố (trái với giả sử)
Nếu $p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k\in\mathbb{N}^*$
Khi đó $8p-1=8(3k+2)-1=3(8k+5)\vdots 3$. Mà $8p-1>3$ nên không thể là số nguyên tố (trái với giả sử)
Suy ra điều giả sử là sai, tức là $8p-1,8p+1$ không thể đồng thời là snt với $p$ nguyên tố.
vì \(2^n-1\) là số nguyên tố nên tổng các ước của \(2^n-1\) là \(1+2^n-1\)
tổng các ước của \(2^{n-1}\left(2^n-1\right)\) là \(\displaystyle\Sigma ^{n-1}_{i=0}(2^i)\times (1+2^n-1)\)\(=\left(2^n-1\right)\times2^n=2\left[2^{n-1}\left(2^n-1\right)\right]\)
Vậy số đã cho là số hoàn hảo
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
a: \(\Omega=\left\{1;2;3;4;5;6\right\}\)
b: A={2;3;5}
B={1;4;6}
\(ac+bd=\left(b+d+a-c\right)\left(b+d-a+c\right)\)
\(\Leftrightarrow ac+bd=\left(b+d\right)^2-\left(a-c\right)^2\)
\(\Leftrightarrow ac+bd=b^2+d^2+2bd-a^2-c^2+2ac\)
\(\Leftrightarrow a^2-c^2=b^2+d^2+ac+bd\) (1)
Ta có
\(\left(ab+cd\right)\left(ad+bc\right)=a^2bd+ab^2c+acd^2+bc^2d=\)
\(=bd\left(a^2+c^2\right)+ac\left(b^2+d^2\right)\) (2)
Thay (1) vào (2)
\(\left(ab+cd\right)\left(ad+bc\right)=bd\left(b^2+d^2+ac+bd\right)+ac\left(b^2+d^2\right)\)
\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=bd\left(b^2+d^2\right)+bd\left(ac+bd\right)+ac\left(b^2+d^2\right)\)
\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=\left(b^2+d^2\right)\left(ac+bd\right)+bd\left(ac+bd\right)\)
\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=\left(ac+bd\right)\left(b^2+d^2+bd\right)\) (3)
Do \(a>b>c>d\)
\(\Rightarrow\left(a-d\right)\left(b-c\right)>0\Leftrightarrow ab-ac-bd+cd>0\)
\(\Leftrightarrow ab+cd>ac+bd\) (4)
Và
\(\left(a-b\right)\left(c-d\right)>0\Leftrightarrow ac-ad-bc+bd>0\)
\(\Leftrightarrow ac+bd>ad+bc\) (5)
Từ (4) và (5) \(\Rightarrow ab+cd>ad+bc\)
Ta có
(3)\(\Leftrightarrow b^2+d^2+bd=\dfrac{\left(ab+cd\right)\left(ad+bc\right)}{\left(ac+bd\right)}\) (6)
Vế trái là số nguyên => vế phải cũng phải là số nguyên
Giả sử ab+cd là số nguyên tố mà \(ab+cd>ac+bd\)
\(\Rightarrow UC\left(ab+cd;ac+bd\right)=1\) => ab+cd không chia hết cho ac+bd
=> để vế phải của (6) là số nguyên \(\Rightarrow ad+bc⋮ac+bd\Rightarrow ad+bc>ac+bd\) Mâu thuẫn với (5) nên giả sử sai => ab+cd không thể là số nguyên tố
mình là người mới ,cho mình hỏi làm sao để kiếm xu đổi quà
có ai giúp mình với