K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2021

1. Ta có:
ED,EAED,EA là tiếp tuyến của (O)

→ED⊥OD,EA⊥OA⇒ˆADE=ˆOAE=90o→ED⊥OD,EA⊥OA⇒ADE^=OAE^=90o

EDOAEDOA có ˆADE+ˆOAE=180oADE^+OAE^=180o

⇒EDOA⇒EDOA nội tiếp đường tròn đường kính (OE)

→ˆDOA+ˆDEA=180o→DOA^+DEA^=180o

Mà ABCDABCD là hình thang cân

→ˆDMA=ˆDBA+ˆCAB=2ˆDBA=ˆDOA→DMA^=DBA^+CAB^=2DBA^=DOA^

→ˆDMA+ˆAED=180o→AEDM→DMA^+AED^=180o→AEDM nội tiếp được trong một đường tròn

2. Từ câu 1

→ˆEMA=ˆEDA=ˆDBA=ˆCAB→EMA^=EDA^=DBA^=CAB^

Vì EDED là tiếp tuyến của (O),ABCDABCD là hình thang cân

→EM//AB→EM//AB

3. Ta có:

EM//AB→HK//AB→HMAB=DMDB=CMCA=MKABEM//AB→HK//AB→HMAB=DMDB=CMCA=MKAB

→MH=MK→M→MH=MK→M là trung điểm HK

image

2 tháng 1 2019

a) Ta có AB,AC là 2 tiếp tuyến của đường tròn (O;R)\(\Rightarrow AB=AC\Rightarrow\)△ABC cân tại A

b) Ta có AB,AC là 2 tiếp tuyến của đường tròn (O;R)\(\Rightarrow\widehat{FAB}=\widehat{FAC}\Rightarrow\)AF là đường phân giác của △ABC

Lại có △ABC cân tại A

Suy ra AF là đường cao của △ABC\(\Rightarrow\)\(\widehat{BFA}=90^0\) hay BF⊥AO

Ta có △ABO vuông tại B đường cao BF\(\Rightarrow BF^2=AF.FO\Rightarrow\dfrac{AF}{BF}=\dfrac{BF}{FO}\Rightarrow\dfrac{AF^2}{BF^2}=\dfrac{AF}{AO}\left(1\right)\)

Ta có \(\widehat{ABF}=90^0-\widehat{FBO}=\widehat{FOB}\)

Lại có \(\widehat{OFB}=\widehat{AFB}=90^0\)

Suy ra △BAF\(\sim\)△OBF (g-g)\(\Rightarrow\dfrac{AB}{OB}=\dfrac{AF}{BF}\Rightarrow\left(\dfrac{AB}{OB}\right)^2=\left(\dfrac{AF}{BF}\right)^2\Rightarrow\dfrac{AB^2}{OB^2}=\dfrac{AF^2}{BF^2}\left(2\right)\)

Từ (1),(2)\(\Rightarrow\dfrac{AB^2}{OB^2}=\dfrac{AF}{FO}\)

Ta có \(\widehat{COD}=90^0-\widehat{OAC}=90^0-\widehat{OAB}=90^0-\widehat{DAH}=\widehat{ADH}=\widehat{CDO}\)(đối đỉnh) hay \(\widehat{COD}=\widehat{CDO}\Rightarrow\)△COD cân tại C⇒CO=CD

2 tháng 1 2019

vẽ hình giúp mik vs

31 tháng 5 2018

a, Tứ giác AEDO nội tiếp vì tổng 2 góc đối bằng 180 độ

b, Dễ cm ADMO n.t => AEDM n.t => DME = DAE

Mà DAE=DBA => DME=DBA => đpcm

c, áp dụng Ta-let

\(\dfrac{HM}{AB}=\dfrac{DO}{DB}\)\(\dfrac{MK}{AB}=\dfrac{CM}{CA}\)

\(\dfrac{DO}{DB}=\dfrac{CM}{CA}\)(Vì ABCD là hthang cân)

=> MK=MH =>đpcm

d, ta cm \(\dfrac{2}{HK}=\dfrac{1}{AB}+\dfrac{1}{CD}\Leftrightarrow\dfrac{HK}{AB}+\dfrac{HK}{CD}=2\)

\(\Leftrightarrow2\left(\dfrac{HM}{AB}+\dfrac{HM}{CD}\right)=2\Leftrightarrow\dfrac{HM}{AB}+\dfrac{HM}{CD}=1\)

\(\Leftrightarrow\dfrac{MD}{BD}+\dfrac{BM}{BD}=1\left(đúng\right)\)