Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có:
ED,EAED,EA là tiếp tuyến của (O)
→ED⊥OD,EA⊥OA⇒ˆADE=ˆOAE=90o→ED⊥OD,EA⊥OA⇒ADE^=OAE^=90o
EDOAEDOA có ˆADE+ˆOAE=180oADE^+OAE^=180o
⇒EDOA⇒EDOA nội tiếp đường tròn đường kính (OE)
→ˆDOA+ˆDEA=180o→DOA^+DEA^=180o
Mà ABCDABCD là hình thang cân
→ˆDMA=ˆDBA+ˆCAB=2ˆDBA=ˆDOA→DMA^=DBA^+CAB^=2DBA^=DOA^
→ˆDMA+ˆAED=180o→AEDM→DMA^+AED^=180o→AEDM nội tiếp được trong một đường tròn
2. Từ câu 1
→ˆEMA=ˆEDA=ˆDBA=ˆCAB→EMA^=EDA^=DBA^=CAB^
Vì EDED là tiếp tuyến của (O),ABCDABCD là hình thang cân
→EM//AB→EM//AB
3. Ta có:
EM//AB→HK//AB→HMAB=DMDB=CMCA=MKABEM//AB→HK//AB→HMAB=DMDB=CMCA=MKAB
→MH=MK→M→MH=MK→M là trung điểm HK
a) Ta có AB,AC là 2 tiếp tuyến của đường tròn (O;R)\(\Rightarrow AB=AC\Rightarrow\)△ABC cân tại A
b) Ta có AB,AC là 2 tiếp tuyến của đường tròn (O;R)\(\Rightarrow\widehat{FAB}=\widehat{FAC}\Rightarrow\)AF là đường phân giác của △ABC
Lại có △ABC cân tại A
Suy ra AF là đường cao của △ABC\(\Rightarrow\)\(\widehat{BFA}=90^0\) hay BF⊥AO
Ta có △ABO vuông tại B đường cao BF\(\Rightarrow BF^2=AF.FO\Rightarrow\dfrac{AF}{BF}=\dfrac{BF}{FO}\Rightarrow\dfrac{AF^2}{BF^2}=\dfrac{AF}{AO}\left(1\right)\)
Ta có \(\widehat{ABF}=90^0-\widehat{FBO}=\widehat{FOB}\)
Lại có \(\widehat{OFB}=\widehat{AFB}=90^0\)
Suy ra △BAF\(\sim\)△OBF (g-g)\(\Rightarrow\dfrac{AB}{OB}=\dfrac{AF}{BF}\Rightarrow\left(\dfrac{AB}{OB}\right)^2=\left(\dfrac{AF}{BF}\right)^2\Rightarrow\dfrac{AB^2}{OB^2}=\dfrac{AF^2}{BF^2}\left(2\right)\)
Từ (1),(2)\(\Rightarrow\dfrac{AB^2}{OB^2}=\dfrac{AF}{FO}\)
Ta có \(\widehat{COD}=90^0-\widehat{OAC}=90^0-\widehat{OAB}=90^0-\widehat{DAH}=\widehat{ADH}=\widehat{CDO}\)(đối đỉnh) hay \(\widehat{COD}=\widehat{CDO}\Rightarrow\)△COD cân tại C⇒CO=CD
a, Tứ giác AEDO nội tiếp vì tổng 2 góc đối bằng 180 độ
b, Dễ cm ADMO n.t => AEDM n.t => DME = DAE
Mà DAE=DBA => DME=DBA => đpcm
c, áp dụng Ta-let
\(\dfrac{HM}{AB}=\dfrac{DO}{DB}\) và \(\dfrac{MK}{AB}=\dfrac{CM}{CA}\)
MÀ \(\dfrac{DO}{DB}=\dfrac{CM}{CA}\)(Vì ABCD là hthang cân)
=> MK=MH =>đpcm
d, ta cm \(\dfrac{2}{HK}=\dfrac{1}{AB}+\dfrac{1}{CD}\Leftrightarrow\dfrac{HK}{AB}+\dfrac{HK}{CD}=2\)
\(\Leftrightarrow2\left(\dfrac{HM}{AB}+\dfrac{HM}{CD}\right)=2\Leftrightarrow\dfrac{HM}{AB}+\dfrac{HM}{CD}=1\)
\(\Leftrightarrow\dfrac{MD}{BD}+\dfrac{BM}{BD}=1\left(đúng\right)\)