K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2021

1. Ta có:
ED,EAED,EA là tiếp tuyến của (O)

→ED⊥OD,EA⊥OA⇒ˆADE=ˆOAE=90o→ED⊥OD,EA⊥OA⇒ADE^=OAE^=90o

EDOAEDOA có ˆADE+ˆOAE=180oADE^+OAE^=180o

⇒EDOA⇒EDOA nội tiếp đường tròn đường kính (OE)

→ˆDOA+ˆDEA=180o→DOA^+DEA^=180o

Mà ABCDABCD là hình thang cân

→ˆDMA=ˆDBA+ˆCAB=2ˆDBA=ˆDOA→DMA^=DBA^+CAB^=2DBA^=DOA^

→ˆDMA+ˆAED=180o→AEDM→DMA^+AED^=180o→AEDM nội tiếp được trong một đường tròn

2. Từ câu 1

→ˆEMA=ˆEDA=ˆDBA=ˆCAB→EMA^=EDA^=DBA^=CAB^

Vì EDED là tiếp tuyến của (O),ABCDABCD là hình thang cân

→EM//AB→EM//AB

3. Ta có:

EM//AB→HK//AB→HMAB=DMDB=CMCA=MKABEM//AB→HK//AB→HMAB=DMDB=CMCA=MKAB

→MH=MK→M→MH=MK→M là trung điểm HK

image

18 tháng 5 2016

A B C D I E O

Cô hướng dẫn nhé. :)

Tứ giác AIDE nội tiếp đường tròn đường kính AI.

b. Do câu a ta có AIDE là tứ giác nội tiếp nên gó IDE = góc IAE. Lại có góc IAE = góc CDB. Từ đó suy ra DB là tia phân giac góc CDE.

c. Ta thấy góc CDE = 2 góc CAB (Chứng minh b). Lại có góc COB = 2 góc CAB. Từ đó suy ra góc CDE = góc COB. Hay OEDC là tứ giác nội tiếp ( Góc ngoài ở đỉnh bằng góc đối diện )

Chúc em học tốt ^^

31 tháng 5 2018

a, Tứ giác AEDO nội tiếp vì tổng 2 góc đối bằng 180 độ

b, Dễ cm ADMO n.t => AEDM n.t => DME = DAE

Mà DAE=DBA => DME=DBA => đpcm

c, áp dụng Ta-let

\(\dfrac{HM}{AB}=\dfrac{DO}{DB}\)\(\dfrac{MK}{AB}=\dfrac{CM}{CA}\)

\(\dfrac{DO}{DB}=\dfrac{CM}{CA}\)(Vì ABCD là hthang cân)

=> MK=MH =>đpcm

d, ta cm \(\dfrac{2}{HK}=\dfrac{1}{AB}+\dfrac{1}{CD}\Leftrightarrow\dfrac{HK}{AB}+\dfrac{HK}{CD}=2\)

\(\Leftrightarrow2\left(\dfrac{HM}{AB}+\dfrac{HM}{CD}\right)=2\Leftrightarrow\dfrac{HM}{AB}+\dfrac{HM}{CD}=1\)

\(\Leftrightarrow\dfrac{MD}{BD}+\dfrac{BM}{BD}=1\left(đúng\right)\)

5 tháng 7 2021

DC = DA

OA = OC

Do đó OD là trung trực của đoạn thẳng AC : suy ra OD vuông góc với AC

Tứ giác OECH có góc CEO + góc CHO = 180 độ 

Suy ra tứ giác OECH là tứ giác nội tiếp