K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2018

a, Học sinh tự chứng minh

b,  N E C ^ = C B E ^ = 1 2 s đ C E ⏜

=> DNEC ~ DNBE (g.g) => ĐPCM

c, DNCH ~ DNMB (g.g)

=> NC.NB = NH.NM = N E 2

DNEH ~ DNME (c.g.c)

=>  N E H ^ = E M N ^

d,  E M N ^ = E O M ^  (Tứ giác NEMO nội tiếp)

=>  N E H ^ = N O E ^ => EH ^ NO

=> DOEF cân tại O có ON là phân giác =>  E O N ^ = N O F ^

=> DNEO = DNFO vậy  N F O ^ = N E O ^ = 90 0 => ĐPCM

24 tháng 1 2022

địt mẹ mày giải như đầu buồi

vt góc với tam giác sai mẹ hết

1 tháng 6 2017

Bài này mạch cảm xúc từng bậc một ... :v
a->b->c-d khá dễ dàng đó :3

21 tháng 2 2018

Rau
Bạn giải cụ thể giùm với.!

25 tháng 3 2018

a, ta có: góc AEI = 90o (góc nội tiếp chắn nửa đường tròn) => EI\(\perp\)AK tại E và AH\(\perp\)KI tại H (gt)

chúng cắt nhau tại B => B là trực tâm. => KB vuông góc AI (đpm)

b, ta có: góc ECA = góc EBA ( cùng chắn cung AE) mà góc EBA= góc HBI (hai góc đối đỉnh) (4)

ta lại có: góc HBI + góc HIB =90o (tổng 3 góc trong một tam giác) (3)

=> góc ECA + góc HIB = 90o (1)

Xét tam giác CEI vuông tại E nên: góc EKI + góc HIB =90o (2)

Từ (1) và (2) => góc ECA = góc EKI 

=> tứ giác EKNC là tứ giác nội tiếp ) (đpcm)

c,Ta có: góc EAB + góc EBA = 90và từ (3), (4) => góc EAB = góc BIH

mà góc EAB = góc BEN ( bằng 1/2 sđ cung EB)

=> góc BIH = góc BEN=> tam giác ENI cân tại N=> EN =NI (*)

Tương tự, ta có góc K + góc KAH = 90o

góc KEN + góc NEB =90o mà góc KAH = góc NEB (c.m.t)  => góc KEN = góc K   => tam giác KNE cân tại N => NK = NE (**)

từ (*) và (**) => NK = NI hay N là trung điểm KI ( đpcm)

20 tháng 1 2018
CÁC BẠN GIÚP MÌNH VỚI
13 tháng 1 2017

(Quá lực!!!)

E N A B C D O H L

Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.

Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).

Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.

Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).

-----

Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).

Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)