Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Xét (O) có
DC là tiếp tuyến
DA là tiếp tuyến
Do đó: DC=DA
Xét (O) có
EC là tiếp tuyến
EB là tiếp tuyến
Do đó: EC=EB
Ta có: DC+CE=DE
nên DE=DA+EB
b: Xét tứ giác ADCO có \(\widehat{DAO}+\widehat{DCO}=180^0\)
nên ADCO là tứ giác nội tiếp
=>\(\widehat{ADO}=\widehat{ACO}\)
mà \(\widehat{ACO}=\widehat{CAB}\)
nên \(\widehat{ADO}=\widehat{CAB}\)
Em tham khảo tại link dưới đây nhé.
Câu hỏi của My Trấn - Toán lớp 9 - Học toán với OnlineMath
Với câu c, khi đã có IK // AD thì vận dụng Ta let ta có ngay \(\frac{IC}{AD}=\frac{IK}{AD}\Rightarrow IC=IK\)
Với câu c
Kẻ BC cắt DA tại một điểm là P
Ta có : DO//CD(...)
AO=OB(...)
==> DP=DA
Ta lại có: DA//EB. ==> IA/IE=AD/BE
Mà AD=CD; BE=CE(Tính chất 2 tt cắt nhau)
==>IA/IE=CD/CE ==> CI//AD. ==> CK//DA
. CI//PD. ==> CI/PD=BI/BD
. IK//DA ==> IK/DA=BI/BD
==> CI/PD=IK/DA
Mà PD=DA(..) ==>CI=IK
Em tham khảo tại link dưới đây nhé.
Câu hỏi của My Trấn - Toán lớp 9 - Học toán với OnlineMath
Với câu c, khi đã có IK // AD thì vận dụng Ta let ta có ngay \(\frac{IC}{AD}=\frac{IK}{AD}\Rightarrow IC=IK\)
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Xét (O) có
DA,DC là các tiếp tuyến
nên DA=DC
Xét (O) có
EC,EB là các tiếp tuyến
nên EB=EC
DE=DC+CE
=>DE=DA+EB
b: Xét tứ giác DAOC có
góc DAO+góc DCO=180 độ
nên DAOC làtứgiác nội tiếp
=>góc ADO=góc ACO=góc CAB
a)
► Tính chất của hai tiếp tuyến cùng xuất phát từ một điểm, ta có:
AC = CM ; BD = MD
=> AC + BD = CM + MD = CD
► Câu trên có thể cm trực tiếp bằng cách nối OC => hai tgiác ACO và MCO bằng nhau (vì tgiác vuông, có chung cạnh huyền, OA=OM=R)
=> OC là tia phân giác của góc AO^M
tương tự: OD cúng là phân giác cua góc BO^M
AO^C + CO^M + DO^M + DO^B = 180o
=> 2.CO^M + 2DO^M = 180o
=> CO^M + DO^M = CO^D = 90o
► tgiác COD vuông có OM là đường cao, hệ thức lượng:
CM.MD = OM²
=> AC.BD = R² (cm trên: AC=CM; BD=MD; OM=R)
► ad toilet với chú ý AC//BD
NC/NB = AC/BD = CM/MD
định lí đảo talet => MN//AC
► có: MN//AC//BD => hai tgiác CBD và CNM đồng dạng
=> CD/CM = DB/MN
=> CD.MN = CM.DB
► gọi K là trung điểm CD
do tgiác OCD vuông tại O => K là tâm đường tròn ngoại tiếp tgíc OCD
OK là đường trung bình của hình thang ABDC => OK//AC//BD
=> OK vuông góc AB tại O
=> AB là tiếp tuyến của đường tròn (OCD)
b)
► ta đã cm: AC+BD = CD
=> AC+BD nhỏ nhất khi CD nhỏ nhất
Có Ax //By, C thuộc Ax, D thuộc By
=> CD nhỏ nhất khi CD vuông góc vơi Ax và By
khi đó ta có ABDC là hình chữ nhật
=> M là điểm chính giữa của cung AB
► tứ giác ABDC thường là hình thang vuông, gọi diện tích là S
S = (1/2)AB.(AC+BD) = (1/2).AB.CD
vì AB cố định nên S nhỏ nhất khi CD nhỏ nhất
như câu trên có M là điểm chính giữa cung AB
c) tgiac OAM cân tại O, lại có OE là phân giác => OE vuông AM
tương tự OF vuông BM, mà CO^D= 90o
=> EOFM là hình chữ nhật
=> I là trung điểm EF cũng là trung điểm OM
=> OI = OM/2 = R/2
I di động nhưng luôn có OI = R/2 không đổi
=> I thuộc đường tròn cố định: tâm O bán kính r = R/2
** giới hạn: M chỉ di động trên nữa đường tròn (O,R) => I chỉ di động trên nữa đường tròn (O,r) nằm cùng phía với (O,R) so với AB
<< phần giới hạn là khuyến mãi thêm, vì đề chỉ yêu cầu cm I thuộc một đường tròn cố định, không phải tìm quỉ tích >>
d) dùng định lí Melanus là nhanh nhất: có ngay E,N,F thẳng hàng => EF/AB = ME.MA = MN/MJ = 1/2
=> MN = MJ/2 = NJ
Em tham khảo tại link dưới đây nhé.
Câu hỏi của My Trấn - Toán lớp 9 - Học toán với OnlineMath
Câu c) Đã có IK // AD thì ta vận dụng Ta let và thấy ngay :
\(\frac{IC}{AD}=\frac{IK}{AD}\Rightarrow IC=IK\)
c) Gọi giao điểm của BM với Ax là I. Từ M kẻ MK vuông góc với AB. BC cắt MK tại E.
Vì MK vuông góc AB => MK // AC // BD
EK // AC => \(\frac{EK}{AC}=\frac{BE}{BC}\); ME // IC => \(\frac{ME}{IC}=\frac{BE}{BC}\) => \(\frac{EK}{AC}=\frac{ME}{IC}\)
Tam giác MIA vuông tại M có CA = CM => góc CAM = góc CMA => góc CIM = góc CMI => tam giác CMI cân tại C => CI = CM => CM = CI = CA => EK = ME.
\(EK=ME\Rightarrow\frac{EK}{BD}=\frac{ME}{BD}\)mà \(\frac{ME}{BD}=\frac{CM}{CD}=\frac{AK}{AB}\Rightarrow\frac{EK}{BD}=\frac{AK}{AB}\)
=> Tam giác AKE đồng dạng với tam giác ABD (c.g.c) => góc EAK = góc DAK => A,E,D thẳng hàng => BC cắt AD tại E mà theo giả thiết BC cắt AD tại N => E trùng với N => H trùng với K => N là trung điểm MH.
A B O C E F D I H K M J
a) Theo tính chất hai tiếp tuyến cắt nhau, ta có AE = EC; BF = FC
Vậy nên AE + BF = EC + CF = EF
b) Xét tam giác vuông BAD có AC là đường cao nên áp dụng hệ thức lượng trong tam giác, ta có:
\(DA^2=DC.DB\)
c) Ta thấy rằng \(\Delta DCA\sim\Delta DAB\Rightarrow\frac{DA}{DB}=\frac{CA}{AB}\)
Lại có AB = 2OB; AC = 2AH.
Vậy nên \(\frac{DA}{DB}=\frac{2.AH}{2.OB}=\frac{AH}{OB}\)
Ta cũng có \(\widehat{DAH}=\widehat{DBO}\) (Cùng phụ với góc \(\widehat{BCA}\) )
Nên \(\Delta DAH\sim\Delta DBO\Rightarrow\widehat{DHA}=\widehat{DOB}\)
Mà \(\widehat{DHA}=\widehat{IHK}\) nên \(\widehat{DOB}=\widehat{IHK}\)
Xét tứ giác HIOK có \(\widehat{DOB}=\widehat{IHK}\) nên HIOK là tứ giác nội tiếp. Vậy thì \(\widehat{HIK}=\widehat{HOK}\)
\(\widehat{HIK}+\widehat{HAK}=\widehat{HOK}+\widehat{HAK}=90^o\)
\(\Rightarrow\widehat{AKI}=90^o\Rightarrow IK\perp AB\)
d) Từ A kẻ AJ song song với BD cắt BF tại J.
Khi đó ta thấy ngay ADBJ là hình bình hành. Vậy thì DJ giao với AB tại trung điểm mỗi đường hay O là trung điểm của AB và DJ.
Vậy ta có D, O , J thẳng hàng.
Xét tam giác AFJ có \(AB\perp FJ\)
\(FO\perp BC\) mà BC // AJ nên \(FO\perp AJ\)
Vậy thì O là trực tâm tam giác AFJ hay \(JO\perp AF\) (1)
Xét tam giác AIO có \(IK\perp AO;OH\perp AI\Rightarrow\) M là trực tâm tam giác.
Vậy thì \(AM\perp IO\) (2)
Từ (1) và (2) suy ra A, M , F thẳng hàng.
Em tham khảo tại link dưới đây nhé.
Câu hỏi của My Trấn - Toán lớp 9 - Học toán với OnlineMath
Với câu c, khi đã có IK // AD thì vận dụng Ta let ta có ngay \(\frac{IC}{AD}=\frac{IK}{AD}\Rightarrow IC=IK\)