Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo tại link dưới đây nhé.
Câu hỏi của My Trấn - Toán lớp 9 - Học toán với OnlineMath
Với câu c, khi đã có IK // AD thì vận dụng Ta let ta có ngay \(\frac{IC}{AD}=\frac{IK}{AD}\Rightarrow IC=IK\)
Với câu c
Kẻ BC cắt DA tại một điểm là P
Ta có : DO//CD(...)
AO=OB(...)
==> DP=DA
Ta lại có: DA//EB. ==> IA/IE=AD/BE
Mà AD=CD; BE=CE(Tính chất 2 tt cắt nhau)
==>IA/IE=CD/CE ==> CI//AD. ==> CK//DA
. CI//PD. ==> CI/PD=BI/BD
. IK//DA ==> IK/DA=BI/BD
==> CI/PD=IK/DA
Mà PD=DA(..) ==>CI=IK
Em tham khảo tại link dưới đây nhé.
Câu hỏi của My Trấn - Toán lớp 9 - Học toán với OnlineMath
Với câu c, khi đã có IK // AD thì vận dụng Ta let ta có ngay \(\frac{IC}{AD}=\frac{IK}{AD}\Rightarrow IC=IK\)
Em tham khảo tại link dưới đây nhé.
Câu hỏi của My Trấn - Toán lớp 9 - Học toán với OnlineMath
Với câu c, khi đã có IK // AD thì vận dụng Ta let ta có ngay \(\frac{IC}{AD}=\frac{IK}{AD}\Rightarrow IC=IK\)
a)
► Tính chất của hai tiếp tuyến cùng xuất phát từ một điểm, ta có:
AC = CM ; BD = MD
=> AC + BD = CM + MD = CD
► Câu trên có thể cm trực tiếp bằng cách nối OC => hai tgiác ACO và MCO bằng nhau (vì tgiác vuông, có chung cạnh huyền, OA=OM=R)
=> OC là tia phân giác của góc AO^M
tương tự: OD cúng là phân giác cua góc BO^M
AO^C + CO^M + DO^M + DO^B = 180o
=> 2.CO^M + 2DO^M = 180o
=> CO^M + DO^M = CO^D = 90o
► tgiác COD vuông có OM là đường cao, hệ thức lượng:
CM.MD = OM²
=> AC.BD = R² (cm trên: AC=CM; BD=MD; OM=R)
► ad toilet với chú ý AC//BD
NC/NB = AC/BD = CM/MD
định lí đảo talet => MN//AC
► có: MN//AC//BD => hai tgiác CBD và CNM đồng dạng
=> CD/CM = DB/MN
=> CD.MN = CM.DB
► gọi K là trung điểm CD
do tgiác OCD vuông tại O => K là tâm đường tròn ngoại tiếp tgíc OCD
OK là đường trung bình của hình thang ABDC => OK//AC//BD
=> OK vuông góc AB tại O
=> AB là tiếp tuyến của đường tròn (OCD)
b)
► ta đã cm: AC+BD = CD
=> AC+BD nhỏ nhất khi CD nhỏ nhất
Có Ax //By, C thuộc Ax, D thuộc By
=> CD nhỏ nhất khi CD vuông góc vơi Ax và By
khi đó ta có ABDC là hình chữ nhật
=> M là điểm chính giữa của cung AB
► tứ giác ABDC thường là hình thang vuông, gọi diện tích là S
S = (1/2)AB.(AC+BD) = (1/2).AB.CD
vì AB cố định nên S nhỏ nhất khi CD nhỏ nhất
như câu trên có M là điểm chính giữa cung AB
c) tgiac OAM cân tại O, lại có OE là phân giác => OE vuông AM
tương tự OF vuông BM, mà CO^D= 90o
=> EOFM là hình chữ nhật
=> I là trung điểm EF cũng là trung điểm OM
=> OI = OM/2 = R/2
I di động nhưng luôn có OI = R/2 không đổi
=> I thuộc đường tròn cố định: tâm O bán kính r = R/2
** giới hạn: M chỉ di động trên nữa đường tròn (O,R) => I chỉ di động trên nữa đường tròn (O,r) nằm cùng phía với (O,R) so với AB
<< phần giới hạn là khuyến mãi thêm, vì đề chỉ yêu cầu cm I thuộc một đường tròn cố định, không phải tìm quỉ tích >>
d) dùng định lí Melanus là nhanh nhất: có ngay E,N,F thẳng hàng => EF/AB = ME.MA = MN/MJ = 1/2
=> MN = MJ/2 = NJ
Em tham khảo tại link dưới đây nhé.
Câu hỏi của My Trấn - Toán lớp 9 - Học toán với OnlineMath
Câu c) Đã có IK // AD thì ta vận dụng Ta let và thấy ngay :
\(\frac{IC}{AD}=\frac{IK}{AD}\Rightarrow IC=IK\)
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Xét (O) có
DA,DC là các tiếp tuyến
nên DA=DC
Xét (O) có
EC,EB là các tiếp tuyến
nên EB=EC
DE=DC+CE
=>DE=DA+EB
b: Xét tứ giác DAOC có
góc DAO+góc DCO=180 độ
nên DAOC làtứgiác nội tiếp
=>góc ADO=góc ACO=góc CAB
c) Gọi giao điểm của BM với Ax là I. Từ M kẻ MK vuông góc với AB. BC cắt MK tại E.
Vì MK vuông góc AB => MK // AC // BD
EK // AC => \(\frac{EK}{AC}=\frac{BE}{BC}\); ME // IC => \(\frac{ME}{IC}=\frac{BE}{BC}\) => \(\frac{EK}{AC}=\frac{ME}{IC}\)
Tam giác MIA vuông tại M có CA = CM => góc CAM = góc CMA => góc CIM = góc CMI => tam giác CMI cân tại C => CI = CM => CM = CI = CA => EK = ME.
\(EK=ME\Rightarrow\frac{EK}{BD}=\frac{ME}{BD}\)mà \(\frac{ME}{BD}=\frac{CM}{CD}=\frac{AK}{AB}\Rightarrow\frac{EK}{BD}=\frac{AK}{AB}\)
=> Tam giác AKE đồng dạng với tam giác ABD (c.g.c) => góc EAK = góc DAK => A,E,D thẳng hàng => BC cắt AD tại E mà theo giả thiết BC cắt AD tại N => E trùng với N => H trùng với K => N là trung điểm MH.
A B O C E F D I H K M J
a) Theo tính chất hai tiếp tuyến cắt nhau, ta có AE = EC; BF = FC
Vậy nên AE + BF = EC + CF = EF
b) Xét tam giác vuông BAD có AC là đường cao nên áp dụng hệ thức lượng trong tam giác, ta có:
\(DA^2=DC.DB\)
c) Ta thấy rằng \(\Delta DCA\sim\Delta DAB\Rightarrow\frac{DA}{DB}=\frac{CA}{AB}\)
Lại có AB = 2OB; AC = 2AH.
Vậy nên \(\frac{DA}{DB}=\frac{2.AH}{2.OB}=\frac{AH}{OB}\)
Ta cũng có \(\widehat{DAH}=\widehat{DBO}\) (Cùng phụ với góc \(\widehat{BCA}\) )
Nên \(\Delta DAH\sim\Delta DBO\Rightarrow\widehat{DHA}=\widehat{DOB}\)
Mà \(\widehat{DHA}=\widehat{IHK}\) nên \(\widehat{DOB}=\widehat{IHK}\)
Xét tứ giác HIOK có \(\widehat{DOB}=\widehat{IHK}\) nên HIOK là tứ giác nội tiếp. Vậy thì \(\widehat{HIK}=\widehat{HOK}\)
\(\widehat{HIK}+\widehat{HAK}=\widehat{HOK}+\widehat{HAK}=90^o\)
\(\Rightarrow\widehat{AKI}=90^o\Rightarrow IK\perp AB\)
d) Từ A kẻ AJ song song với BD cắt BF tại J.
Khi đó ta thấy ngay ADBJ là hình bình hành. Vậy thì DJ giao với AB tại trung điểm mỗi đường hay O là trung điểm của AB và DJ.
Vậy ta có D, O , J thẳng hàng.
Xét tam giác AFJ có \(AB\perp FJ\)
\(FO\perp BC\) mà BC // AJ nên \(FO\perp AJ\)
Vậy thì O là trực tâm tam giác AFJ hay \(JO\perp AF\) (1)
Xét tam giác AIO có \(IK\perp AO;OH\perp AI\Rightarrow\) M là trực tâm tam giác.
Vậy thì \(AM\perp IO\) (2)
Từ (1) và (2) suy ra A, M , F thẳng hàng.
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Xét (O) có
DC là tiếp tuyến
DA là tiếp tuyến
Do đó: DC=DA
Xét (O) có
EC là tiếp tuyến
EB là tiếp tuyến
Do đó: EC=EB
Ta có: DC+CE=DE
nên DE=DA+EB
b: Xét tứ giác ADCO có \(\widehat{DAO}+\widehat{DCO}=180^0\)
nên ADCO là tứ giác nội tiếp
=>\(\widehat{ADO}=\widehat{ACO}\)
mà \(\widehat{ACO}=\widehat{CAB}\)
nên \(\widehat{ADO}=\widehat{CAB}\)