K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Điểm M ở đâu vậy bạn?

b: góc ONP=góc ONB+góc PNB

góc ANB=1/2*sđ cung AB=90 độ

=>BN vuông góc AK

=>BN//KC

=>góc ABN=góc ACK

=>góc ONB=góc ACK

Xét ΔKBC có

KP vừa là đường cao, vừa là trung tuyến

=>ΔKBC cân tại K

=>góc BKP=góc CKP

góc ONP=góc ONB+góc BNP

=góc ONB+góc BKP

=góc ONB+góc CKP

=góc OBN+góc NAB=90 độ

=>NP là tiếp tuyến của (O)

29 tháng 7 2023

bạn sửa câu a) MP thành PK nhé

b: góc ONP=góc ONB+góc PNB

góc ANB=1/2*sđ cung AB=90 độ

=>BN vuông góc AK

=>BN//KC

=>góc ABN=góc ACK

=>góc ONB=góc ACK

Xét ΔKBC có

KP vừa là đường cao, vừa là trung tuyến

=>ΔKBC cân tại K

=>góc BKP=góc CKP

góc ONP=góc ONB+góc BNP

=góc ONB+góc BKP

=góc ONB+góc CKP

=góc OBN+góc NAB=90 độ

=>NP là tiếp tuyến của (O)

a: KNBP nội tiếp

=>góc PNK=góc PBK; góc PKN=180 độ-góc NBP

=>góc PNK=góc PCK

=>góc PNK=góc AKP

180 độ-góc NBP=góc ABN

=>180 độ-góc NBP=góc AKP

=>góc PNK=góc PKN

=>PK=PN

a: Xét (O) có

MP là tiếp tuyến

MB là tiếp tuyến

Do đó: MP=MB và OM là tia phân giác của góc POB(1)

Xét (O) có

NP là tiếp tuyến

NC là tiếp tuyến

Do đó: NP=NC và ON là tia phân giác của góc POC(2)

Ta có: MN=MP+PN

nên MN=MB+NC

b: Từ (1) và (2) suy ra \(\widehat{MON}=\dfrac{1}{2}\cdot\left(\widehat{POB}+\widehat{POC}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

22 tháng 12 2016

giúp mình đi nhá!!! cần gấp á!!

23 tháng 12 2016

chả ai quan tâm đâu :v toán chả ai giải :v

13 tháng 1 2017

(Quá lực!!!)

E N A B C D O H L

Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.

Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).

Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.

Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).

-----

Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).

Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)

6 tháng 6 2016
Giúp mình đi mọi người
7 tháng 6 2016

Cô hướng dẫn nhé nguyen van vu :)

K

a. Ta có góc COD = COM + MOD = \(\frac{AOM}{2}+\frac{BOM}{2}=\frac{180}{2}=90^o\)

b. Dễ thấy E là trung điểm CD, O là trung điểm AB nên OE song song AC. Vậy OE vuông góc AB.

c. Gọi MH là đường thẳng vuông góc AB, Ta chứng minh BC, AD đều cắt MH tại trung điểm của nó.

Gọi I là giao của AM và BD. Đầu tiên chứng minh ID = DB. Thật vậy, góc MID=IMD (Cùng bằng cung AM/2)

nên ID =MD, mà MD=DB nên ID=DB.

Gọi K là giao của MH và AD.

Theo Talet , \(\frac{MK}{DI}=\frac{AK}{AD}=\frac{KH}{BD}\Rightarrow MK=KH\)

Tương tự giao điểm của BC với MH cũng là trung điểm MH.

Tóm lại N trùng K hay MN vuông góc AB.