K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2023

1: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC\(\perp\)CB tại C

=>AC\(\perp\)BF tại C

Xét tứ giác EDBC có

\(\widehat{EDB}+\widehat{ECB}=90^0+90^0=180^0\)

=>EDBC là tứ giác nội tiếp

Xét tứ giác ADCF có

\(\widehat{ADF}=\widehat{ACF}=90^0\)

=>ADCF là tứ giác nội tiếp

2: EDBC là tứ giác nội tiếp

=>\(\widehat{DEC}+\widehat{DBC}=180^0\)

mà \(\widehat{DEC}+\widehat{IEC}=180^0\)(kề bù)

nên \(\widehat{IEC}=\widehat{DBC}\)

3: \(\widehat{IEC}=\widehat{DBC}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AC}\)(góc DBC là góc nội tiếp chắn cung AC)

\(\widehat{ICE}=\dfrac{1}{2}\cdot sđ\stackrel\frown{CA}\)(góc ICE là góc tạo bởi tiếp tuyến IC và dây cung CA)

Do đó: \(\widehat{IEC}=\widehat{ICE}\)

=>IE=IC

\(\widehat{IEC}+\widehat{IFC}=90^0\)(ΔFCE vuông tại C)

\(\widehat{ICE}+\widehat{ICF}=\widehat{FCE}=90^0\)

mà \(\widehat{IEC}=\widehat{ICE}\)

nên \(\widehat{IFC}=\widehat{ICF}\)

=>IF=IC

mà IC=IE

nên IF=IC=IE

=>I là tâm đường tròn ngoại tiếp ΔCFE

17 tháng 11 2023

mik c.ơn nhiều

 

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0
24 tháng 8 2017

1. Cho nửa đtr tâm O đường kính AB. M bất kì thuộc cung AB. MD AB. Qua C cung MB kẻ tiếp tuyến Cx cắt DM tại I. DM cắt AC ở E, BC tại F. Chứng minh

a) B,C,E,D thuộc 1 đtr

A,D,C,F thuộc 1 đtr

b) ^MEC=^ABC

c) I là tâm đtr ngoại tiếp tam giác EFC