Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
Đáp số: n=28.
1) Biet rang 996 va 632 khi chia cho n deu du 16 . Tim n.
2) Chung minh rang 7n + 10 va 5n + 7 la hai so nguyen to cung nhau ( n thuoc N )
3) Biet rang 7a + 2b chia het cho 13 (a,b thuoc N) . Chung minh rang 10a + b cung chia het cho 13
Được cập nhật Bùi Văn Vương
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
Anh làm phần a,b em tự mày mò nhé.
a)Ta có:
n và n+1 là 2 số tự nhiên liên tiếp khác tính chẵn lẻ nên 1 số là chẵn:
=>(n+1)n(n+2) chia hết cho 2.
n;n+1;n+2 là 3 só tự nhiên liên tiếp nên 1 số chia hết cho 3(chứng minh bằng dùng 3k;3k+1;3k+2)
=>n(n+1)(n+2) chia hết cho 3.
Vậy ....
Anh làm phần a,b em tự mày mò nhé.
a)Ta có:
n và n+1 là 2 số tự nhiên liên tiếp khác tính chẵn lẻ nên 1 số là chẵn:
=>(n+1)n(n+2) chia hết cho 2.
n;n+1;n+2 là 3 só tự nhiên liên tiếp nên 1 số chia hết cho 3(chứng minh bằng dùng 3k;3k+1;3k+2)
=>n(n+1)(n+2) chia hết cho 3.
Vậy ....
Ta có A = 1 + 2 +3 + ... + n
= n(n+1) : 2
lại có n(n+1) là tích chẵn
=> n(n+1) \(⋮\)2
=> a \(⋮\)2
=> a chẵn
mặt khác, 2n + 1 \(⋮̸\)2
=> 2n + 1 là số lẻ
=> b lẻ
Ngoài ra ta nhận thấy ƯCLN của 1 số lẻ và 1 số chẵn = 1
=> chúng là 2 số nguyên tố cùng nhau
tương tự như vậy a và b là 2 số nguyên tố cùng nhau (đpcm)
1)
a)
=10...0+5
=10..05 chia hết cho 5
=1+0+5=6 chia hết cho3
b)10...0+44
=10...04 chia hết cho 2
=1+0+0+4+4=9 chia hết cho 9
n là stn => n= 3k hoặc n=3k + 1 hoặc n= 3k + 2 (k thuộc N)
với n=3k
ta có : 3k ( 3k + 1) (3k +5)
3k chia hết 3 => 3k ( 3k + 1) ( 3k + 5) chia hết cho 3
hay: n(n+1)(n+5) chia hết cho 3
với n=3k+1
ta có : (3k+1)(3k+1+1)(3k+1+5)
=(3k+1)(3k+2)(3k+6)
=3(3k+1)(3k+2)(k+2) chia hết cho 3
hay : n(n+1)(n+5) chia hết cho 3
với n= 3k+ 2
ta có : (3k+2)(3k+2+1)(3k+2+5)
=(3k+2)(3k+3)(3k+7)
=3(3k+2)(k+1)(3k+7) chia hết cho 3
hay : n(n+1)(n+5) chia hết cho 3
Vậy với mọi stn n thì n(n+1)(n+5) chia hết cho 3