K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2017

b không chia hết cho 3 nên ta xét 2 trường hợp:

TH1: b chia 3 dư 1 nên b = 3k + 1

\(\Rightarrow\left(3k+1\right)^2-1=9k^2+6k+1-1=3k\left(3k+3\right)\)

Vì \(3⋮3\)

Do đó \(3k\left(3k+2\right)⋮3\Rightarrow\left(3k+1\right)^2-1⋮3\)

TH2: b chia 3 dư 2 nên b = 3k + 2

\(\Rightarrow\left(3k+2\right)^2-1=9k^2+12k+4-1=3k\left(3k+4\right)\)

vì \(3⋮3\)

Do đó \(3k\left(3k+4\right)⋮3\Rightarrow\left(3k+2\right)^2-1⋮3\)

Vậy với b là một số tự nhiên không chia hết cho 3 thì \(b^2-1⋮3\)

24 tháng 11 2017

b là số tự nhiên không chia hết cho 3 => b có dạng 3k+1 hoặc 3k+2 (k thuộc N*)

Th1: b=3k+1=> b^2-1=9.k^2+6k+1-1=9.k^2+6k chia hết cho 3

Th2: b=3k+2 => b^2-1=9.k^2+12k+4-1=9.k^2+12k+3 chia hết cho 3

Vậy với mọi b là số tự nhiên không chia hết cho 3 thì b^2-1 chia hết cho 3

22 tháng 7 2015

 Gọi 3 số đó là a; a+1; a+2

Ta có: a+ a+1 + a+2 = 3a +3

3 chia hết cho 3 => 3a chia hết cho 3

=> 3a+3 chia hết cho 3

=> Tổng của 3 số tự nhiên liên tiếp luôn chia hết cho 3

 

 

gọi bốn số tự nhiên liên tiếp là a,a+1,a+2,a+3

ta có a+(a+1) +(a+2)+(a+3) = 4a +6 không chia hết cho 4

vì 4a chia hết cho 4 , 6 không chia hết cho 4

suy ra bốn số tự nhiên liên tiếp  không chia hết cho 4

**** nhé

- gọi 3 số tự nhiên liên tiếp là a ; a+1 ; a+2 ( a thuộc N )

ta có : a+(a+1)+(a+2)=3a+3=3 . ( a + 1 ) chia hết cho 3

vậy tổng của 3 số liên tiếp chia hết cho 3

- gọi 4 số tự nhiên liên tiếp là a ; a+1 ; a+2 ; a+3 ( a thuộc N )

ta có : a+(a+1)+(a+2)+(a+3)=4a + 6 ko chia hết cho 4 ( 6 ko chia hết cho 4 )

16 tháng 7 2016

b)goi 3 số tự nhiên la a, a+1, a+2 
tổng 3 số la 3a+3 chia hết cho 3

a)Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N ) 
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1 
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3 
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3 
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3 

17 tháng 7 2016

Ban co chac chan dung ko vay

21 tháng 4 2016

Đặt n2+3n+5 = (*)

Giả sử n=1 => (*) <=> 12+3.1+5 không chia hết cho 121 ( đúng )

Vậy với n=1 đúng

Giả sử (*) đúng với n=k 

=> (*) <=> k2+3k+5

Ta cần c/m (*) đúng với n = k+1

Thật vậy với n= k+1 

=> (*) <=> (k+1)2+3(k+1)+5 

tự viết tiếp

23 tháng 7 2015

a. Gọi 3 số đó là a , a+1, a+2

Ta có: a+ a+1 + a+2 = 3a +3

3 chia hết cho 3 => 3a chia hết cho 3

=> 3a+3 chia hết cho 3

=> Tổng của 3 số tự nhiên liên tiếp luôn chia hết cho 3

a. Gọi 4 số đó là a , a+1, a+2 ,a+4

Ta có: a+ a+1 + a+2 +a+4 = 4a +4

4 chia hết cho 4 => 4a chia hết cho 4

=> 4 a+4 chia hết cho 4

=> Tổng của 4 số tự nhiên liên tiếp luôn chia hết cho 4

10 tháng 7 2019

ban tren lam sai roi kia vi ho noi khong chia het cho 4 ma