Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Để cho \(\left(n^2+3\right)⋮\left(n+1\right)\) thì
\(A=\frac{n^2+3}{n+1}\) là 1 số nguyên
Ta có: \(A=\frac{n^2+3}{n+1}=n-1+\frac{4}{n+1}\)
Để A nguyên thì (n + 1) phải là ước nguyên của 4 hay
\(\left(n+1\right)=\left(-4,-2,-1,1,2,4\right)\)
\(\Rightarrow x=\left(-5,-3,-2,0,1,3\right)\)
Giả sử n chia hết cho 5
=> n = 5k ( k \(\in\)N *)
Ta có ;
\(A=n^2+n+1=25k^2+5k+1=5\left(5k^2+k\right)+1\)không chia hết cho 5
( Do 1 không chia hết cho 5 )
Vậy \(A=n^2+n+1\)không chia hết cho 5
Bài 1:
Có: n2 + n = n(n+1)
Xét: Nếu n lẻ thì n+1 chẵn => n(n+1) chia hết cho 2 (1)
Nếu n chẵn thì n chẵn => n(n+1) chia hết cho 2 (2)
Từ (1) và (2) => n2 + n là hợp số
Bài 2:
a) M = 1 + 32 + 34 + ... + 398
=> 9M = 32 + 34 + ... + 3100
=> 9M - M = 3100 - 1
=> M = \(\frac{3^{100}-1}{8}\)
b) M = 1 + 32 + 34 + ... + 398
= (1+32) + (34+36) + ... + (396+398)
= 10 + 34(1+32) + ... + 396(1+32)
= 10(34+...+396) \(⋮\) 10
Bài 2:
a) \(M=1+3^2+3^4+3^6+3^8+...+3^{98}\)
\(\Rightarrow9M=3^2+3^4+3^6+...+3^{100}\)
\(\Rightarrow9M-M=\left(3^2+3^4+3^6+...+3^{100}\right)-\left(1+3^2+3^4+...+3^{98}\right)\)
\(\Rightarrow8M=3^{100}-1\)
\(\Rightarrow M=\frac{3^{100}-1}{8}\)
b) \(M=1+3^2+3^4+...+3^{98}\)
\(\Rightarrow M=\left(1+3^2\right)+\left(3^4+3^6\right)+...+\left(3^{96}+3^{98}\right)\)
\(\Rightarrow M=\left(1+9\right)+3^4\left(1+3^2\right)+...+3^{96}\left(1+3^2\right)\)
\(\Rightarrow M=10+3^4.10+3^{96}.10\)
\(\Rightarrow M=\left(1+3^4+3^{96}\right).10⋮10\)
\(\Rightarrow M⋮10\)
Ta thấy
n(n + 1)(n + 2) là ba số tự nhiên liên tiếp
Ta có nhận xét:
Tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3
Tổng của hai số tự nhiên liên tiếp luôn chia hết cho 2
=> Tích của ba số tự nhiên liên tiếp luôn chia hết cho 1.2.3 = 6
=> đpcm
Ta thấy :
n(n+1) (n+2) là 3 số tự nhiên liên tiếp chia hết cho 6
Ta nhận xét rằng:
Tổng của 3 số tự nhiên liên tiếp thì sẽ luôn chia hết cho 3.
Tích của 3 số tự nhiên liên tiếp sẽ luôn chia hết cho 2.3=6
Như vậy n(n+1) (n+2) sẽ chia hết cho 6.