K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

Ta có : \(n\) là hợp số nên suy ra \(n\) có thể viết dưới dạng : \(n=a.b\) \(\left(a;b\in N;a>1;b>1\right)\)

Giả sử \(a>\sqrt{n};b>\sqrt{n}\Rightarrow a.b>\sqrt{n}.\sqrt{n}=n\)  mâu thuẫn với \(n=a.b\)

Nên suy ra : \(a\le\sqrt{n}\) hoặc \(b\le\sqrt{n}\) 

Mà \(a;b\) là một trong các ước của \(n\) nên suy ra : \(n\) có ước nguyên tố \(p\le\sqrt{n}\) ( đpcm )

31 tháng 3 2020

Với \(x=0\Rightarrow n^5+n^4+1=1\left(loai\right)\)

Với \(x=1\Rightarrow n^5+n^4+1=3\left(TM\right)\)

Với \(x\ge2\) ta có:

\(n^5+n^4+1\)

\(=n^5-n^2+n^4-n+n^2+n+1\)

\(=n^2\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=A\cdot\left(n^2+n+1\right)+B\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)\left(A+B+1\right)\) là hợp số với mọi \(n\ge2\)

Vậy \(n=1\)

31 tháng 3 2020

Với \(n=0\Rightarrow A=n^8+n+1=1\left(KTM\right)\) vì 1 không là SNT

Với \(n=1\Rightarrow A=n^8+n+1=3\left(TM\right)\) vì 3 là SNT

Với \(n\ge2\) ta có:

\(A=n^8+n+1\)

\(=\left(n^8-n^2\right)+n^2+n+1\)

\(=n^2\left(n^6-1\right)+\left(n^2+n+1\right)\)

\(=n^2\left[\left(n^3\right)^2-1^2\right]+\left(n^2+n+1\right)\)

\(=n^2\left(n^3-1\right)\left(n^3+1\right)+\left(n^2+n+1\right)\)

\(=X\cdot\left(n^3-1\right)+\left(n^2+n+1\right)\)

\(=X\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=X'\left(x^2+n+1\right)+\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)\left(X'+1\right)\) là hợp số với \(n\ge2\)

Vậy \(n=1\)

13 tháng 11 2016

Do \(n>2\)

=> \(2^n>2^2=4\) ma 4 > 3

=>\(2^n>3\)

=>\(2^n=\begin{cases}3k+1\\3k+2\end{cases}\)

Neu \(2^n=3k+2\)

=>\(2^n+1=3k+2+1=3k+3⋮3\) ( trai nguoc voi de bai )

=>\(2^n=3k+1\)

=> \(2^n-1=3k+1-1=3k⋮3\)

Vay \(2^n-1\) la hop so

 

 

 

14 tháng 2 2018

Gọi 2n -1,2n ,2n+1 là 3 số nguyên liên tiếp (n>2)

Ta có 2n-1 là số nguyên tố lớn hơn 3

=>2n-1 không chia hết cho 3

2n không chia hết cho 3 (2n -1,2n ,2n+1 là 3 số nguyên liên tiếp)

=> 2n+1 chia hết cho3 (1)

Vì n>2 => 2 n+1 > 3 (2)

Từ (1) và (2) => 2 n+1 là hợp số(đpcm)

16 tháng 11 2019

mình thấy hơi khó

12 tháng 7 2016

làm ơn giúp mình đi