Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(n-2\ne0\Leftrightarrow n\ne2\)
b) \(\frac{15}{n-2}\in Z\) khi \(n-2\inƯ\left(15\right)\)
\(\Leftrightarrow n-2\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
đến đây tự lập bảng rồi làm
a, n-2 khác 0 nên n khác 2
b, n-2 là ước của 15 vậy n-2 = { +-1;+-3;+-5;+-15} tương ứng ta có
n-2 = -1 => n=1 Tm
n-2 =1 => n=3 Tm
n-2=3 => n= 5 Tm
tương tự tìm các giá trị còn lại nhé
ks cho mình nhé
a
Để A là phân số thì \(2n-1\ne0\Rightarrow n\ne\frac{1}{2}\)
b
A là số nguyên thì \(\frac{2n+4}{2n-1}=\frac{2n-1+5}{2n-1}=1+\frac{5}{2n+1}\inℤ\)
\(\Rightarrow\frac{5}{2n-1}\inℤ\)
\(\Rightarrow2n-1\in\left\{1;5;-1;-5\right\}\)
\(\Rightarrow n\in\left\{1;6;0;-2\right\}\)
c
\(A=\frac{1}{2}\Rightarrow\frac{2n+4}{2n-1}=\frac{1}{2}\Rightarrow4n+8=2n-1\Rightarrow2n+9=0\Rightarrow n=\frac{9}{2}\)
Để M có GTNN thì:
2008 - 1508 : ( a - 15 ) = 0
1508 : ( a - 15 ) = 2008
\(a-15=\frac{1508}{2008}=\frac{377}{502}\)
\(a=\frac{377}{502}+15=15\frac{377}{502}\)
Vậy\(a=15\frac{377}{502}\) để M có GTNN bằng 0
Cbht
a) Ta có: Để M là phân số <=> -n + 2 \(\ne\)0 <=> -n \(\ne\)-2 <=> n \(\ne\)2
b) Ta có :
+) n = 6 => M = \(\frac{-2}{-6+2}=\frac{-2}{-4}=\frac{1}{2}\)
+) n = 7 => M = \(\frac{-2}{-7+2}=\frac{-2}{-5}=\frac{2}{5}\)
+) n = -3 => M = \(\frac{-2}{-\left(-3\right)+2}=-\frac{2}{5}\)
c) Để M \(\in\)Z <=> -2 \(⋮\)-n + 2
<=> -n + 2 \(\in\)Ư(-2) = {1; -1; 2; -2}
Với: +)-n + 2 = 1 => -n = -1 => n = 1
+) -n + 2 = -1 => -n = -3 => n = 3
+) -n + 2 = 2 => -n = 0 => n= 0
+) -n + 2 = -2 => -n = -4 => n= 4
Vậy ...
#)Giải :
a) Để M là phân số
\(\Rightarrow-n+2\ne0\)
\(\Rightarrow n\ne-2\)
b)Thay n = 6 vào M, ta có :
\(M=\frac{-2}{-6+2}=\frac{-2}{-4}=\frac{2}{4}=\frac{1}{2}\)
Thay n = 7 vào M, ta có :
\(M=\frac{-2}{-7+2}=\frac{-2}{-5}=\frac{2}{5}\)
Thay n = - 3 vào M, ta có :
\(M=\frac{-2}{-\left(-3\right)+2}=\frac{-2}{3+2}=\frac{-2}{5}\)
c)Để M nhận giá trị nguyên
\(\Rightarrow-2⋮-n+2\)
\(\Rightarrow-n+2\inƯ\left(-2\right)=\left\{-2;-1;1;2\right\}\)
Nếu \(-n+2=-2\Rightarrow n=4\)
Nếu \(-n+2=-1\Rightarrow n=3\)
Nếu \(-n+2=1\Rightarrow n=1\)
Nếu \(-n+2=2\Rightarrow n=0\)
Vậy với \(n\in\left\{4;3;1;0\right\}\)thì M nhận giá trị nguyên
Để A là số nguyên thì 2\(⋮\)n-1
=> n-1 \(\in\)Ư(2)= {1;2; -1; -2}
n\(\in\){2;3 ;0; 1}
Vậy...
\(A=\frac{2}{n-1}\) Để A nguyên => 2 \(⋮\)n - 1
=> n - 1 \(\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta lập bảng
n - 1 | -1 | 1 | -2 | 2 |
n | 0 | 2 | -1 | 3 |
Để M nguyên thì 4n+9 chia hết cho 2n+3
<=> 2(2n+3) +3 chia hết cho 2n+3
=> 3 chia hết cho 2n+3
Vì n nguyên nên 2n+3 là ước của 3
Các ước của 3 là 3;1;-1;-3
Do đó,2n+3 thuộc {3;1;-1;-3}
=> n thuộc {0;-0,5;-2;-3}
Vì n nguyên nên n thuộc {0;-2;-3}
Vậy ...
b, chứng minh tương tự nhưng tử ko chia hết cho mẫu
a) Để \(M=\frac{4n+9}{2n+3}\)\(\inℤ\)
\(\Rightarrow4n+9⋮2n+3\)
\(\Rightarrow\)\(2(2n+3)+3⋮2n+3\)
Mà 2(2n+3) chia hết cho 2n+3
=> 2 chia hết cho 2n +3
=> 2n+3 \(\inƯ\left(3\right)\)
TA CÓ BẢNG SAU : ( Lập bảng nha )
phần b mik chưa nghĩ ra nha
a, (n+1)(n+3) là SNT <=> 1 ts = 1; ts còn lại là SNT.
TH1: n+1=1 => n=0 => n+3=3 (t/m)
TH2: n+3=1 => n=-2 => n+1=-1 (không t/m)
=> n=0.
b, A không tối giản => ƯCLN(n+3;n-5) >1
=> ƯCLN(8;n-5) >1 => n-5 chẵn => n lẻ.
\(M=\frac{a+5}{a-2}=\frac{\left(a-2\right)+5+2}{a-2}=\frac{\left(a-2\right)+7}{a-2}=\frac{7}{a-2}\)
Để M nguyên
\(\Leftrightarrow7⋮a-2\)
\(\Rightarrow a-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow a\in\left\{3;1;9;-5\right\}\)
Vậy...........................
p/s : câu a,b,d quên cách làm r :(