Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{a+5}{a-2}=\frac{\left(a-2\right)+5+2}{a-2}=\frac{\left(a-2\right)+7}{a-2}=\frac{7}{a-2}\)
Để M nguyên
\(\Leftrightarrow7⋮a-2\)
\(\Rightarrow a-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow a\in\left\{3;1;9;-5\right\}\)
Vậy...........................
p/s : câu a,b,d quên cách làm r :(
Bài 2:
\(P=2010-\left(x+1\right)^{2008}\)
Ta có: \(\left(x+1\right)^{2008}\ge0\forall x\)
\(\Rightarrow2010-\left(x+1\right)^{2008}\le2010\forall x\)
\(P=2010\Leftrightarrow\left(x+1\right)^{2008}=0\Leftrightarrow x=-1\)
Vậy \(x=-1\)thì \(B_{max}=2010\)
Bài 1:
\(D=\frac{x+5}{|x-4|}\)
Ta có: \(|x-4|\ge0\forall x\)
\(\Rightarrow D=\frac{x+5}{|x-4|}=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)
Vì 1 không đổi
Nên để D đạt GTNN thì: \(\frac{9}{x-4}\)phải đạt GTLN
\(\Rightarrow x-4\)phải đạt GTLN
\(\Rightarrow x=13\)
GTNN của \(D=1+\frac{9}{x-4}=1+\frac{9}{13-4}=1+\frac{9}{9}=1+1=2\)
Vậy x=3 thì D đạt GTNN
Bài 2:
\(P=2010-\left(x+1\right)^{2008}\)
Ta có: \(\left(x+1\right)^{2008}\ge0\forall x\)
\(\Rightarrow2010-\left(x+1\right)^{2008}\le2010-0\)
\(\Rightarrow P\le2010\)
\(\Rightarrow\)GTLN của P=2010
\(\Leftrightarrow\left(x+1\right)^{2008}=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy x=-1 thì P đạt GTLN
Vì tử số là số âm nên mẫu số phải là số dương nhỏ nhất.
Ta thấy |2x + 6| lớn hơn hoặc bằng 0 => |2x + 6| + 1 lớn hơn hoặc bằng 1
Dâu "=" xảy ra khi 2x + 6 = 0 => x = (0 - 6) : 2 = -3
Vậy min A = -1 khi x = -3
l2x+6l >= 0 => l2x+ 6 l + 1 >= 1 với mọi x
=> -1/ l2x+6l + 1 >= -1/1 = - 1
VẬy GTNN của A là -1 khi 2x + 6 = 0 => x = - 3
Nhận thấy \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)
=> \(\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\forall x\)
Dấu "=" xảy ra <=> \(2x+\frac{1}{3}=0\Rightarrow x=-\frac{1}{6}\)
Vậy Min A = -1 <=> X = -1/6
a, \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\)
Dấu "=" xảy ra <=> 2x+1/3=0 <=> x= -1/6
Để M có GTNN thì:
2008 - 1508 : ( a - 15 ) = 0
1508 : ( a - 15 ) = 2008
\(a-15=\frac{1508}{2008}=\frac{377}{502}\)
\(a=\frac{377}{502}+15=15\frac{377}{502}\)
Vậy\(a=15\frac{377}{502}\) để M có GTNN bằng 0
Cbht