Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B chia hết cho 30 :
B = 5 + 52 + ... + 596
B = ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 595 + 596 )
B = 5 ( 1 + 5 ) + 53 ( 1 + 5 ) + ... + 595 ( 1 + 5 )
B = 5 . 6 + 53 . 6 + ... + 595 . 6
B = 6 ( 5 + 53 + ... + 595 )
= > B chia hết cho 6
Vì B các số hạng của B là những số chia hết cho 5 ( 5 ; 52 ; ... ; 596 )
= > Tổng B chia hết cho 5
Vì ( 5 ; 6 ) = 1 = > B chia hết cho 30
\(5^5-5^4+5^3=5^3.5^2-5^3.5+5^3=5^3\left(5^2-5+1\right)=5^3.21=5^3.3.7\)Nên chia hết cho 7
Ta có: A= 2 + 22 + 23 +.....+ 2100
Vì A là tổng các lũa thừa của 2 nên A chia hết cho 2
Ta có: A = 2 + 22 + 23 +.....+ 2100
=> A = (2 + 22) + (23 + 24) + ..... + (299 + 2100)
=> A = 1.(2 + 4) + 2.(2 + 4) + ...... + 298.(2 + 4)
=> A = 1.6 + 2.6 + ..... + 298.6
=> A = 6.(1 + 2 + .... + 298) chia hết cho 6
Ta có: A = 2 + 22 + 23 +.....+ 2100
=> A = (2 + 22 + 23 + 24) + ..... + (297 + 298 + 299 + 2100)
=> A = 1.(2 + 4 + 8 + 16) + .... + 296.(2 + 4 + 8 + 16)
=> A = 1.30 + .... + 296.30
=> A = 30.(1 + ..... + 296) chia hết cho 30
a/ M(x)+N(x)=(3x3+3x3)+(x2+2x2)-(3x+x)+(5+9)
=6x3+3x2-4x+14
b/ Ta có: M(x)+N(x)-P(x)=6x3+3x2+2x
=> P(x)=M(x)+N(x)-6x3+3x2+2x=-6x
c/ P(x)=-6x=0
=> x=0 là nghiệm đa thức P(x)
d/ Ta có: x2+4x+5
=x.x+2x+2x+2.2+1
=x(x+2)+2(x+2)+1
=(x+2)(x+2)+1
=(x+2)2+1
Mà (x+2)2\(\ne0\)=> Đa thức trên \(\ge1\)
=> Đa thức trên vô nghiệm.
M (x)- N (x)
= \(3x^4+5x^3-3x^2+4x-2\) - \(2x^4-5x^3+4x^2-4x+5\)
= \(x^4+x^2+3\)
Do \(x^4\ge0\) ( với mọi x )
\(x^2\ge0\) ( với mọi x )
=> \(x^4+x^2+3>0\) ( với mọi x )
Vậy M(x) - N(x) vô nghiệm
S=(5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^28+5^29+5^30)
=>Có 30:3=10 nhóm
=>S=5(1+5+5^2)+...+5^28(1+5+5^2)
=>S=5.31+...+5^28.31
S=31(5+....+5^28) chia hết cho 31
nhớ bấm đúng cho mình bạn nhé
M = 5 + 52 + 53 + .....+580
M = (5 + 52) + ( 53 + 54) +...+(579+580)
M = 30 + 52.( 5+52)+......+578.( 5+52)
M = 30 + 52.30 +.....+578.30
M = 30.( 1 + 52+.....+ 578)
30 ⋮ 30 ⇔M= 30. ( 1 + 52+....578) ⋮ 30(đpcm)