\(\forall\)x

   <...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2021

M = x^2 - 4x 

=  x^2 - 4x + 4 - 4

=  (x^2 - 4x + 4 ) - 4

=(x - 2 )^2  - 4

Vì (x - 2 )^2  \(\ge\)0  => (x - 2 )^2 - 4 \(\ge\) - 4    ( với  \(\forall\) x )

Dấu  '' = '' sảy ra  <=>  (x - 2 )^2  = 0

                              <=>  x  -  2   = 0

                               <=>  x    =  2    

Vậy   min M =  - 4     Khi   x  =  2     

18 tháng 8 2021

M = x2 - 4x = (x2 - 4x + 4) - 4 = (x - 2)2 - 4

Vì (x - 2)2 ≥ 0 với mọi x

Mà (x - 2)2 - 4 ≥ - 4 với mọi x

Vậy M đạt giá trị nhỏ nhất <=> (x - 2)2 = 0 <=> x = 2

D = x2 - 2x + 5 = (x2 - 2x + 1) + 4 = (x - 1)2 + 4

Vì (x - 1)2 ≥ 0 với mọi x

Mà  (x - 1)2 + 4 ≥ 4 với mọi x

=> (x - 1)2 + 4 > 0 (luôn dương với mọi x)

=> x2 - 2x + 5 > 0 (luôn dương với mọi x)

19 tháng 8 2018

1. a,\(A=x^2-2x+5=x^2-2.x.1+1^2-1+5\)

\(=\left(x-1\right)^2+4\)

Do \(\left(x-1\right)^2\ge0\) với \(\forall x\) \((\)dấu "=" xảy ra \(\Leftrightarrow x=1)\)

\(\Rightarrow\left(x-1\right)^2+4\ge4\) hay \(A\ge4\) \((\) dấu "=" xảy ra \(\Leftrightarrow x=1)\)

Vậy Min A=4 tại x=1

b,\(B=2x^2-6x=2\left(x^2-3x\right)\)

\(=2.\left(x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}\right)\)

\(=2.\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\right]\)

\(=2.\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)

Do \(2.\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi x (dấu "=" xảy ra <=> x=\(\dfrac{3}{2}\))

\(\Rightarrow2.\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\) hay \(B\ge-\dfrac{9}{2}\)

(dấu "=" xảy ra <=> x=\(\dfrac{3}{2}\))

Vậy Min B = \(-\dfrac{9}{2}\) tại x=\(\dfrac{3}{2}\)

Bài 2

a,\(A=6x-x^2+3=-\left(x^2-6x-3\right)\)

\(=-\left(x^2-2.x.3+3^2-9-3\right)\)

\(=-\left[\left(x-3\right)^2-12\right]\)

\(=-\left(x-3\right)^2+12\)

Do \(-\left(x-3\right)^2\le0\) với mọi x (dấu "=" xảy ra <=> x=3)

\(\Rightarrow-\left(x-3\right)^2+12\le12\) hay \(A\le12\) (dấu "=" xảy ra <=> x=3)

Vậy Max A =12 tại x=3

b,\(B=x-x^2+2=-\left(x^2-x-2\right)\)

\(=-\left[x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)

\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\)

Do \(-\left(x-\dfrac{1}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\) hay \(B\le\dfrac{9}{4}\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))

Vậy Max B=\(\dfrac{9}{4}\) tại x=\(\dfrac{1}{2}\)

c,\(C=5x-x^2-5=-\left(x^2-5x+5\right)\)

\(=-\left[x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{25}{4}+5\right]\)

\(=-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{5}{4}\right]\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{5}{4}\)

Do \(-\left(x-\dfrac{5}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra <=> x=\(\dfrac{5}{2}\))

\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\) hay \(C\le\dfrac{5}{4}\) (dấu ''='' xảy ra <=> x=\(\dfrac{5}{2}\))

Vậy Max C=\(\dfrac{5}{4}\) tại x=\(\dfrac{5}{2}\)

19 tháng 8 2018

Mình làm tiếp phần của Dũng Nguyễn nha.

b) \(4x-x^2-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-2.x.2+4+1\right)\)

\(=-\left(x-2\right)^2-1\)

\(-\left(x-2\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x-2\right)^2-1\le-1\)

\(\Rightarrow-\left(x-2\right)^2-1< 0\) với mọi x

Vậy \(4x-x^2-5< 0\) với mọi x

c) \(x^2-x+1\)

\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x

Vậy \(x^2-x+1>0\) với mọi x

d) \(-x^2+2x-4\)

\(=-\left(x^2-2x+4\right)\)

\(=-\left(x^2-2x+1+3\right)\)

\(=-\left(x-1\right)^2-3\)

\(-\left(x-1\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x-1\right)^2-3\le-3\)

\(\Rightarrow-\left(x-1\right)^2-3< 0\)

Vậy \(-x^2+2x-4< 0\) với mọi x

28 tháng 7 2017

1) \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)

\(\Leftrightarrow 4x^2 + 14x - 10x - 35=4x^2-25\)

\(\Leftrightarrow4x^2-4x^2+14x-10x=35-25\)

\(\Leftrightarrow4x=10\)

\(\Leftrightarrow x=\dfrac{10}{4}=\dfrac{5}{2}\)

Vậy \(x=\dfrac{5}{2}\)

2) \(x^2-4x+5\)

\(=-(4x-x^2-5 )\)

\(= -[-(x^2-4x)-5 ]\)

\(=-[ -(x^2-2x.2+4-4)-5 ]\)

\(= -[-(x-2)^2+4-5 ]\)

\(= -[-(x-2)^2-1 ]\)

\(-(x-2)^2 ≤0\)\(\forall x\) \(\Rightarrow\) \(-(x-2)^2-1<0\) \(\forall x\)

\(\Rightarrow\)\(-[-(x-2)^2-1 ]>0\)\(\forall x\)

\(\Rightarrow x^2-4x+5>0\)\(\forall x\)

2

\(x^2-4x+5=x^2-4x+4+1\\ =\left(x-2\right)^2+1>0\)

NV
29 tháng 2 2020

\(B=\frac{2\left(x^2-4x+5\right)}{\left(x+1\right)^2\left(x-3\right)}\)

ĐKXĐ: \(x\ne-1;3\)

\(A=\frac{\left(x+1\right)^2}{\left(x-2\right)^2+1}\ge0\) do \(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(x-2\right)^2+1>0\end{matrix}\right.\) \(\forall x\)

\(\Rightarrow A_{min}=0\) khi \(x=-1\)

Để AB>0 \(\Leftrightarrow\left\{{}\begin{matrix}A\ne0\\B>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ne-1\\\frac{2\left[\left(x-2\right)^2+1\right]}{\left(x+1\right)^2\left(x-3\right)}>0\end{matrix}\right.\) \(\Rightarrow x-3>0\Rightarrow x>3\)

8 tháng 7 2018

1/

a, \(x^2-6x+10=x^2-6x+9+1=\left(x-3\right)^2+1\ge1>0\)

b,\(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\)

2/

a, \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x-1=0 <=> x=1

Vậy Pmax = 4 khi x = 1

b, \(M=x^2+y^2-x+6y+10=\left(x^2-x+\dfrac{1}{4}\right)^2+\left(y^2+6y+9\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy Mmax = 3/4 khi x = 1/2, y = -3

Câu 1: 

a: \(C=a^2+b^2=\left(a+b\right)^2-2ab=23^2-2\cdot132=265\)

b: \(D=x^3+y^3+3xy\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)

\(=1-3xy+3xy=1\)

18 tháng 9 2020

a) \(A=x^2-2x+5\)

\(=\left(x^2-2x+1\right)+4\)

\(=\left(x-1\right)^2+4\)

Vì \(\left(x-1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x-1\right)^2+4\ge0;\forall x\)

b) a sẽ làm tắt 1 vài bước nhé khi nào kiểm tra thì em làm theo mẫu a là được 

\(B=4x^2+4x+11\)

\(=4\left(x^2+x+\frac{11}{4}\right)\)

\(=4\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{11}{4}\right)\)

\(=4\left[\left(x+\frac{1}{2}\right)^2+\frac{10}{4}\right]\)

\(=4\left(x+\frac{1}{2}\right)^2+10\ge10;\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(B_{min}=10\Leftrightarrow x=\frac{-1}{2}\)

c) Tìm GTLN nhé 

 \(C=5-8x-x^2\)

\(=-x^2-2.x.4-16+16+5\)

\(=-\left(x+4\right)^2+21\)

Vì \(-\left(x+4\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x+4\right)^2+21\le21;\forall x\)

Dấu "="xảy ra\(\Leftrightarrow\left(x+4\right)^2=0\)

                     \(\Leftrightarrow x=-4\)

Vậy\(C_{max}=21\Leftrightarrow x=-4\)

18 tháng 9 2020

A = x2 - 2x + 5

= ( x2 - 2x + 1 ) + 4

= ( x - 1 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )

B = 4x2 + 4x + 11

= ( 4x2 + 4x + 1 ) + 10

= ( 2x + 1 )2 + 10 ≥ 10 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = 10 <=> x = -1/2

C = 5 - 8x - x2

= -( x2 + 8x + 16 ) + 21

= -( x + 4 )2 + 21 ≤ 21 ∀ x

Đẳng thức xảy ra <=> x + 4 = 0 => x = -4

=> MaxC = 21 <=> x = -4