K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

Giả sử trong hai số a, b không đồng thời chia hết cho 3 

=> a+b không chia hết cho 3 => m+2n+n+2m=3(m+n) không chia hết cho 3 ( vô lí ) 

=> điều giả sử sai => đpcm 

Bước đến nhà em bóng xế tà

Đứng chờ năm phút bố em ra

Lơ thơ phía trước vài con chó

Lác đác đằng sau chiếc chổi chà

Sợ quá anh chuồn quên đôi dép

Bố nàng ngoác mỏ đứng chửi cha

Phen này nhất quyết thuê cây kiếm

Trở về chém ổng đứt làm ba

3 tháng 12 2017

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

28 tháng 10 2018

Chép hả Lý

24 tháng 2 2020

Ta có:

( 2m + n ) . ( m + 2n ) = 2m . m + n . m + 2m . 2n + n . 2n 

= 2m2 + mn + 4mn + 2n2

= 2 ( m2 + n) + 5mn 

Vì m2 + n2 chia hết cho 5 => 2 ( m + n2 ) chia hết cho 5 và 5mn chia hết cho 5

=> 2 ( m2 + n2 ) + 5mn chia hết cho 5

=> (2m + n ) ( m + 2n ) chia hết cho 5

=> Tồn tại ít nhất 1 trong hai số 2m + n hoặc m + 2n chia hết cho 5.

24 tháng 2 2020

thank bạn 

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

18 tháng 7 2017

Ta có : n(2n - 3) - 2n(n + 1)

= 2n2 - 3n - 2n2 - 2n

= 2n2 - 2n2 - 3n - 2n

= -5n 

Mà n nguyên nên -5n chia hết cho 5

18 tháng 7 2017

a, Ta có 

n(2n-3)-2n(n+1)=2n2-3n-2n2-2n

=-5n chia hết cho 5

=> DPCM

b, Ta có (2m-3)(3n-2)-(3m-2)(2n-3)

Lại có  (2m-3)(3n-2)=-(3-2m)(3-2n)=(3-2m)(2n-3)

=> (2m-3)(3n-2)-(3m-2)(2n-3)=(2m-3)(3n-2)-(2m-3)(3-2n)=0

=> (2m-3)(3n-2)-(3m-2)(2n-3)=0

=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5 

=> DPCM

11 tháng 4 2018

Ta có: 
giả sử: A= n^2 + 11n + 39 chia hết cho 49 => A chia hết cho 7 
mà : n^2 + 11n + 39 = (n+9)(n+2) +21 chia hết cho 7 
=> (n+9)(n+2) chia hết cho 7 
lại có: (n+9) - (n+2) = 7 nên (n+9) và (n+2) đồng thời chia hết cho 7 
=>(n+9)(n+2) chia hết cho 49 
mà: (n+9)(n+2) +21 chia hết cho 49 
=> 21 chia hết cho 49 vô lí => đpcm 

Bài 2: A=3^ (2*n) + 3^n + 1 
n không chia hết cho 3 nên ta xét 2 trường hợp: 
* n =3k +1: 
A = 3^ (6k + 3) + 3^(3k +1) +1= 9.27^2k +3.27^ +1 
= 9.(26+1)^2k + 3.(26 +1)^k +1 
= 9(2.13 +1)^2k + 3.(2.13 +1)^k +1 
A đồng dư với (9 +3 +1)= 13 theo đồng dư 0 theo (mod 13) 
vậy A chia hết cho 13. 
( Mình giải thích thêm nhé: 
(2.13 +1)^2k chia cho 13 dư 1 
=> 9(2.13 +1)^2k chia cho 13 dư 9 
(2.13 +1)^k chia 13 dư 1 
=> 3.(2.13 +1)^k chia 13 dư 1 
=> A chia 13 dư 9 + 3 +1 = 13 
A = 13.k +13 với k nguyên 
A/13 = k + 1 la số nguyên => A chia hết cho 13 
khi triển khai (x+1)^n = thì các hạng tử đều chứa x trừ hạng tử cuối = 1 nên (x+1)^n chia cho x dư 1.) 
* n = 3k +2: 
A = 3^(6k +4) + 3^(6k +2) +1=81.27^2k +9.27^k +1 
= 81.(2.13+1)^2k + 9(2.13 +1)^k +1 
A đồng dư với ( 81 + 9 +1) = 91 đồng dư 0 theo (mod 13) 
vậy A chia hết cho 13 
=> đpcm

11 tháng 4 2018

Ta có: 
giả sử: A= n^2 + 11n + 39 chia hết cho 49 => A chia hết cho 7 
mà : n^2 + 11n + 39 = (n+9)(n+2) +21 chia hết cho 7 
=> (n+9)(n+2) chia hết cho 7 
lại có: (n+9) - (n+2) = 7 nên (n+9) và (n+2) đồng thời chia hết cho 7 
=>(n+9)(n+2) chia hết cho 49 
mà: (n+9)(n+2) +21 chia hết cho 49 
=> 21 chia hết cho 49 vô lí => đpcm 

Bài 2: A=3^ (2*n) + 3^n + 1 
n không chia hết cho 3 nên ta xét 2 trường hợp: 
* n =3k +1: 
A = 3^ (6k + 3) + 3^(3k +1) +1= 9.27^2k +3.27^ +1 
= 9.(26+1)^2k + 3.(26 +1)^k +1 
= 9(2.13 +1)^2k + 3.(2.13 +1)^k +1 
A đồng dư với (9 +3 +1)= 13 theo đồng dư 0 theo (mod 13) 
vậy A chia hết cho 13. 
( Mình giải thích thêm nhé: 
(2.13 +1)^2k chia cho 13 dư 1 
=> 9(2.13 +1)^2k chia cho 13 dư 9 
(2.13 +1)^k chia 13 dư 1 
=> 3.(2.13 +1)^k chia 13 dư 1 
=> A chia 13 dư 9 + 3 +1 = 13 
A = 13.k +13 với k nguyên 
A/13 = k + 1 la số nguyên => A chia hết cho 13 
khi triển khai (x+1)^n = thì các hạng tử đều chứa x trừ hạng tử cuối = 1 nên (x+1)^n chia cho x dư 1.) 
* n = 3k +2: 
A = 3^(6k +4) + 3^(6k +2) +1=81.27^2k +9.27^k +1 
= 81.(2.13+1)^2k + 9(2.13 +1)^k +1 
A đồng dư với ( 81 + 9 +1) = 91 đồng dư 0 theo (mod 13) 
vậy A chia hết cho 13 
=> đpcm