K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2020

\(M=2+2^2+2^3+...+2^{20}\)

\(\)\(M=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)

\(M=5+2^2.\left(2+2^2\right)+...+2^{18}.\left(2+2^2\right)\)

\(M=5+2^2.\left(2+2^2\right)+...+2^{18}.\left(2+2^2\right)\)

\(M=5+2^2.5+...+2^{18}.5\)

\(M=5.\left(1+2^2+...+2^{18}\right)\)

\(\text{Do }5⋮5\Rightarrow5.\left(1+2^2+...+2^{18}\right)\)

\(\text{Hay A⋮5}\left(đpcm\right)\)

\(\text{Vậy }A⋮5\)

25 tháng 10 2020

đpcm và gì vậy ạ ?

10 tháng 11 2016

Ta có: M = 2+22+23+....+220

    => M = (2+22+23)+(24+25+26)+...+(217+218+219+220)

      => M = 2 x (1+2+22) + 24 x (1+2+22)+....+217 x (1+2+22)

     => M = 2 x 5 + 24 x 5 +......+217 x 5

     => M = 5 x (2+24+...+217) chia hết cho 5

Vậy M chia hết cho 5

10 tháng 11 2016

M=2+22+23+...+220.

  =(2+22+23+24)+(25+26+27+28)+...+(217+218+219+220).

  =2.(1+2+22+23)+25.(1+2+22+23)+...+217.(1+2+22+23).

  =2.15+25+15+...+217+15.

   =15.2.(1+24+...+216)

=3.5.2.(1+24+...+216) chia hết cho 5

  

22 tháng 5 2021

M = 2 + 22 + 23 + ... + 220

Đầu tiên tính M đã hem

2M = 2 ( 2 + 2+ 23 +.... + 220 )

2M = 22 + 23 + 2+ ... + 221

2M - M = ( dòng 2M ngay trên ) - ( đầu bài )    

M = 221 - 2 

M = 220 . 2 - 2

M = (24)5 . 2 - 2 ( vào năm sẽ bít )

M = ( ... 6 ) . 2 - 2

M = (...2) - 2 

M = ...0 chia hết cho 5 

Học tốt

DD
22 tháng 5 2021

\(M=2+2^2+2^3+...+2^{20}\)

\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{17}\left(1+2+2^2+2^3\right)\)

\(=2.15+...+2^{17}.15\)

\(=15\left(2+2^5+...+2^{17}\right)⋮5\)

5 tháng 8 2023

a, A = 2 + 22 + 23 + 24 +....+ 260

A = (2 + 22) + ( 23 + 24) +...+ (259 + 260)

A = 2.(1 + 2) + 23.(1 + 2) +...+ 259.(1 + 2)

A = 2.3 + 23.3 +...+ 259.3

A = 3.( 2 + 23+...+ 259) vì 3 ⋮ 3 ⇒ A = 3.(2 + 23 +...+ 259) ⋮ 3 (đpcm)

A = 2 + 22 + 23+ 24+...+ 260 

A = ( 2 + 22 + 23) + ( 24 + 25 + 26) +...+ (258 + 259 + 260)

A = 2.( 1 + 2 + 4) + 24.(1 + 2 + 4)+...+ 258.(1 + 2+4)

A = 2.7 + 24.7 +...+258.7

A = 7.(2 + 2+ ...+ 258) vì 7 ⋮ 7 ⇒ A = 7.(2 + 24+...+ 258)⋮ 7(đpcm)

    A = 2 + 22 + 23 + 24 +...+ 260

    A = (2 + 22 + 23 + 24) +...+( 257 + 258 + 259+ 260)

   A = 2.(1 + 2 + 22 + 23) +...+ 257.(1 + 2 + 22+23)

   A = 2.30 + ...+ 257. 30

  A = 30.( 2 +...+ 257) vì 30 ⋮ 15 ⇒ 30.( 2 + ...+ 257) ⋮ 15 (đpcm)

 

 

 

 

3 tháng 5 2018

A= 2+22 +23+...........+298+299+2100

  = (2+22+23+24+25) +.............+(296+297+298+299+230)

  =         62 +.................+2(2+22+23+24+25)

=           62+...................+62

=>A CHIA HẾT CHO 62(ĐPCM)

26 tháng 8 2018

A = 2 + 22 + 23 + 24 + ... + 298 + 299 + 2100

    = (2 + 22 + 23 + 24 + 25) + .... + (296 + 297 + 298 + 299 + 2100)

    = 62 + ... + 295.(2 + 22 + 23 + 24 + 25)

     = 62 + ... + 295 . 62

    = 62.(1 + ... + 295\(⋮\)62

3 tháng 11 2017

a/ \(1+5+5^2+..........+5^{501}\)

\(=\left(1+5\right)+\left(5^2+5^3\right)+............+\left(5^{500}+5^{501}\right)\)

\(=1\left(1+5\right)+5^2\left(1+5\right)+...........+5^{500}\left(1+5\right)\)

\(=1.6+5^2.6+.............+5^{500}.6\)

\(=6\left(1+5^2+..........+5^{500}\right)⋮6\left(đpcm\right)\)

b/ \(2+2^2+2^3+............+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+............+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+............+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+..........+2^{96}.31\)

\(=31\left(2+........+2^{96}\right)⋮31\left(đpcm\right)\)

3 tháng 11 2017

a)1+5+5^2+5^3+........+5^501

= 6+(5^2+5^3)+(5^4+5^5)......+(5^500+5^501)

=6+150+150(5^2+5^3)+150(5^4+5^5).......150(5^499+5^500)

=6+150(5^2+5^3+.......+5^500)

mà 6 chia hết cho 6

150(5^2+5^3+.......+5^500) chia hết cho 6

=> 6+150(5^2+5^3+.......+5^500) chia hết cho 6

=> 6+150+150(5^2+5^3)+150(5^4+5^5).......150(5^499+5^500) chia hết cho 6

=> 6+(5^2+5^3)+(5^4+5^5)......+(5^500+5^501) chia hết cho 6

=> 1+5+5^2+5^3+........+5^501 chia hết cho 6

a)

  •  \(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{59}.3\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\)

  • \(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=2.7+2^4.7+...+2^{58}.7\)

\(=7\left(2+2^4+2^{58}\right)⋮7\)

  • \(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=2.15+2^5.15+...+2^{57}.15\)

\(=15\left(2+2^5+2^{57}\right)⋮15\)

b) \(B=1+5+5^2+5^3+...+5^{96}+5^{97}+5^{98}\)

\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{96}+5^{97}+5^{98}\right)\)

\(=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+..+5^{96}\left(1+5+5^2\right)\)

\(=31+5^3.31+...+5^{96}.31\)

\(=31\left(1+5^3+...+5^{96}\right)⋮31\)

28 tháng 3 2017

a) M =1+3+32+33+......+3118+3119
M = ( 1+3+32 ) +...+ ( 3117 + 3118+3119 )
M = 1. ( 1+3+32 ) + ... + 3117 . ( 3117 + 3118+3119 )
M = ( 1+3+32 ) .( 1 + ... + 3117 )
M = 13 . ( 1 + ... + 3117 ) \(⋮\) 13 (đpcm )

28 tháng 3 2017

b) Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{2009^2}< \dfrac{1}{2008.2009}\)
\(\dfrac{1}{2010^2}< \dfrac{1}{2009.2010}\)

=> \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\) (1)
Biến đổi vế trái:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\)

= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}+\dfrac{1}{2009}-\dfrac{1}{2010}\)
= \(1-\dfrac{1}{2010}\)
= \(\dfrac{2009}{2010}< 1\) (2)

Từ (1) và (2), suy ra :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < 1 hay:
N < 1