Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ,
M = 1 + 2 + 22 + ... + 299
= ( 1 + 2 ) + ( 22 + 23 ) + ... + ( 298 + 299 )
= 1 . 3 + 22 ( 1 + 2 ) + ... + 298 ( 1 + 2 )
= 1 . 3 + 22 . 3 + .... + 298 . 3
= 3 ( 1 + ... + 298 ) chia hết cho 3
câu b !? là sao
\(A=1+2+2^2+2^3+2^4+.....+2^{98}+2^{99}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+2^5+.....+2^{99}+2^{100}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+2^4+.....+2^{99}+2^{100}\right)-\left(1+2+2^2+2^3+.....+2^{98}+2^{99}\right)\)
\(\Rightarrow A=2^{100}-1=2^{98}\times2^2-1=2^{98}\times4-1< 2^{98}\times5\)
Vậy A < 298 x 5
2S=2(1+2+22+23+..+29)
2S=2+22+...+210
2S-S=(2+22+...+210)-(1+2+22+23+..+29)
S=210-1 (tới đây tách ra làm như Trinh Hai Nam)
\(2S=2+2^2+2^3+2^4+...+2^{10}\)
=> \(2S-S=\left(2+2^2+2^3+2^4+...+2^{10}\right)-\left(1+2+2^2+2^3+...+2^9\right)\)
=> \(S=2^{10}-1=1024-1=1023\)
Mà \(5.2^8=5.256=1280\)
Vì 1023 < 1280
=> \(S<5.2^8\).
Ta có :
2S=2+2^2+2^3+...+2^10
2S-S=2+2^2+2^3+...+2^10-1-2-2^2-...-2^9
S=2^10-1
=>S<2^10 (1)
Ta lại có :
5.2^8>2^10 (2)
Tu (1) va (2) suy ra : S<5.2^8
****
\(S=1+2+2^2+2^3+....+2^8+2^9.\)
\(\Rightarrow2S=\text{}2+2^2+2^3+....+2^8+2^9+2^{10}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+....+2^8+2^9+2^{10}\right)-\left(1+2+2^2+2^3+....+2^8+2^9\right)\)
\(S=2^{10}-1=1024-1=1023< 5\cdot2^8=5\cdot256=1280\)
Ta có: \(S=1+2+2^2+...+2^{2005}\)
\(2S=2\left(1+2+2^2+...+2^{2005}\right)\)
\(2S-S=\left(2+2^2+2^3+...+2^{2005}+2^{2006}\right)\)\(-\left(1+2+2^2+...+2^{2005}\right)\)
\(S=2^{2006}-1\)
Mà \(5.2^{2004}=\left(1+2^2\right)\)=
Cho S = 1+2+22+23+...+29
=> 2S = 2+22+23+...+29+210
=> 2S - S = S = 210 - 1 = 28 . 22 - 1 = 28 . 4 - 1
Ta có 5 . 28 = 4 . 28 + 28
Vì 1 < 28 nên S < 5 . 28
S=1+2+2^2+2^3+....+2^9
2S=2+2^2+2^3+.....+2^10
2S-S=2^10-1
=>S=2^10-1
=1024-1
=1023
5.2^8=5.256=1280
Vì 1023<1280=>S<5.2^8
1+2+22+23+24+.........+29
2S= 2+22+23+24+........+29+210
2S-S= ( 2+22+23+24+........+29+210)-(1+2+22+23+24+.........+29)
S= 210-1
Ta có: 5.28= (4+1).28
= 4.28+ 28
= 22.28+28
= 210+28
=> 210-1 < 210+28
Hay S < 5.28