Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHD vuông tại H và ΔBKC vuông tại K có
AD=BC
góc D=góc D
Do đó; ΔAHD=ΔBKC
SUy ra: DH=CK
Xét ΔBDC và ΔACD có
BD=AC
DC chung
BC=AD
Do đó: ΔBDC=ΔACD
Suy rA: góc OCD=góc ODC
=>ΔOCD cân tại O
=>OC=OD
b: Xét tứ giác ABKH có AB//KH và AB=KH
nên ABKH là hình bình hành
Suy ra: AB=HK=a
Xét ΔAHD vuông tại H có cos ADH=DH/AD
=>DH/a=1/2
=>DH=1/2a
=>CK=DH=1/2a
=>CK+DH=a
=>DC=2a
C=a+a+a+2a=5a
a: Xét ΔADC và ΔBCD có
AD=BC
DC chung
AC=BD
Do đó: ΔADC=ΔBCD
Suy ra: \(\widehat{CAD}=\widehat{DBC}\)
b: Ta có: ΔADC=ΔBCD
nên \(\widehat{ODC}=\widehat{OCD}\)
hay ΔOCD cân tại O
Suy ra: OC=OD
hay OA=OB
A B C D H K M N E F 4cm
xét tg ADH và tg BCK có: ^AHD=^BKC=90 ; AD=BC( vì tg ABCD là hthang cân); ^ADH =^BCK (vì tg ABCD là hthang cân)
=> tg ADH=tg BCK (ch-gn) => DH=CK
b) xét hthang ABCD có: M là t/đ của AD(gt) và N là t/đ của BC(gt)=> MN là đg trung bình của hthang ABCD => MN//AB//CD
và MN= 1/2.(AB+CD)=> MN= 1/2.(4+10)==7 (cm)
xét tg ABC có: N là t/đ của Bc(gt) ; NF//AB( vì F thuộc MN ; MN//AB) => F là t/đ của AC=> NF la đg trung bình của tg ABC
=> NF=1/2.AB=1/2.4=2(cm)
c/m tương tự ta đc: ME=2cm
ta có: MN=ME+EF+FN ( vì E,F thuộc MN)
=> 7 =2+EF+2 => EF=3 (cm)
Vậy độ dài cạnh EF là 3cm
A B D H K C
Xét hình thang cân ABCD ( AB // CD )
\(\Rightarrow\hept{\begin{cases}\widehat{D}=\widehat{C}\\AD=BC\end{cases}\left(t/c\right)}\)
Xét \(\Delta ADH=\Delta BCK\)
\(\hept{\begin{cases}\widehat{AHD}=\widehat{BKC}\left(=90^o\right)\\AD=BC\left(cmt\right)\\\widehat{D}=\widehat{C}\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta ADH=\Delta BCK\) ( ch - gn )
\(\Rightarrow AH=BK\) ( 2 cạnh tương ứng )
b) Vì \(\Delta ADH=\Delta BCK\left(cmt\right)\)
\(\Rightarrow DK=CK\) ( 2 cạnh tương ứng )
Chúc bạn học tốt !!!
Xét ΔAHD vuông tại H và ΔBKC vuông tại K có
AD=BC
góc D=góc C
Do đó: ΔAHD=ΔBKC
Suy ra: DH=CK
Xét ΔADC và ΔBCD có
AD=BC
CD chung
AC=BD
Do đó: ΔADC=ΔBCD
Suy ra: góc OCD=góc ODC
=>ΔOCD cân tại O
=>OC=OD