K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2018

A B C D E F K I O

a) + Tứ giác ABCD là hình bình hành

\(\Rightarrow\hept{\begin{cases}AB//CD\\AO=CO\end{cases}}\)

Tứ giác AECF có : \(\hept{\begin{cases}AE//CF\\AE=CF\end{cases}}\)

=> Tứ giác AECF là hình bình hành

=> AC và EF cắt nhau tại trung điểm của mỗi đường

=> O là trung điểm của EF

=> E đối xứng với F qua O

b) + Tứ giác ABCD là hình bình hành

=> AB = CD         => AB - AE = CD - CF

=> BE = DF

Tứ giác BEDF có : \(\hept{\begin{cases}BE=DF\\BE//DF\end{cases}}\)

=> tứ giác BEDF là hình bình hành

=> DE // BF

+ Tứ giác IEKF có : \(\hept{\begin{cases}IE//KF\\IF//KE\end{cases}}\)

=> tứ giác IEKF là hình bình hành

=> IK và EF cắt nhau tại trung điểm mỗi đường

=> O là trung điểm của IK

=> I đối xứng với K qua O

25 tháng 9 2022

Sai rồi

Giải thích các bước giải:

ta có: Tam giác ABC vuông tại A (gt)

=> AB^2+AC^2=BC^2

      6^2+8^2     =BC^2

       36+64         =BC^2

        100             =BC^2

     =>BC=10cm

Tam giác ABC vuông tại A có Am là đg trung tuyến

=> AM=BC/2=10/2=5cm

15 tháng 3 2020

HÌNH VẼ THÌ BẠN TỰ VẼ NHÉ, HÌNH NÀY DỄ VẼ MÀ NHỈ. 

Câu a bạn V (Team BTS) làm rồi nên mình chỉ làm các câu còn lại thôi nhé.

b) Vì DM vuông góc AB, AC vuông góc AB (gt) => DM // AC.

=> DMCA là hình thang mà góc ADM = góc DAC = 90 độ.

Do đó ADMC là hình thang vuông.

c) Xét tam giác ABC ta có: DM // AC (cmt), M là trung điểm BC (AM là trung tuyến)

=> D là trung điểm của AB.

Tứ giác AEBM có AB và EM là hai đường chéo cắt nhau tại trung điểm D. => AEBM là hình bình hành. (1)

Lại xét tam giác AMB cân tại M (MA=MB) có MD là trung tuyến => MD cũng là đường cao=> ME vuông góc AB tại D. (2)

Từ (1) và (2) => AEBM là hình thoi.

d) Vì AEBM là hình thoi => AE // BM, AE = BM. 

Mà BM = MC =>  AE // MC, AE = MC. Do đó AEMC là hình bình hành.

e, Câu e mình không hiểu lắm vì thấy đề bài cứ sai sai làm sao. Mình chỉ chứng minh câu F đối xứng với E qua A thôi nhé.

Gọi I là giao điểm của AC và MF. Vì M đối xứng F qua AC => I là trung điểm MF, AC vuông góc MF tại I. 

Chứng minh tương tự câu c ta sẽ được AFMC là hình thoi => AF // MC, AF = MC. 

Mà AE // MC, AE = MC (cmt)

=> A, E, F thẳng hàng (tiên đề Ơ-clit) và A là trung điểm của EF (AE=AF)

Vậy F đối xứng E qua A.