Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó: NM là đường trung bình của ΔABC
Suy ra: NM//BC và \(NM=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
P là trung điểm của GB
Q là trung điểm của GC
Do đó: PQ là đường trung bình của ΔGBC
Suy ra: PQ//BC và \(PQ=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
a: Xét ΔMNP có
H là trung điểm của MN
I là trung điểm của MP
Do đó: HI là đường trung bình
=>HI//NP và HI=NP/2(1)
Xét ΔPQN có
J là trung điểm của PQ
K là trung điểm của QN
Do đó: JK là đường trung bình
=>JK//PN và JK=PN/2(2)
Từ (1) và (2) suy ra HI//KJ và HI=KJ
hay HKJI là hình bình hành
b: Để HKJI là hình thoi thì HJ⊥KI
hay MP⊥NQ
Bài 1:
A B C D M N P Q E F
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
a.Ta có MNPQMNPQ là hình bình hành
→MQ//NP,MQ=NP→MQ//NP,MQ=NP
Mà F,EF,E là trung điểm MQ,NPMQ,NP
→MF=FQ=12MQ=12NP=NE=EP→MF=FQ=12MQ=12NP=NE=EP
→FQ=NE→FQ=NE
→NFQE→NFQE là hình bình hành
→NF//QE→QE//NK→NF//QE→QE//NK
→NEQK→NEQK là hình thang
b.Ta có MF//NE,MF=NEMF//NE,MF=NE
→MNEF→MNEF là hình bình hành
Mà NP=2MN→MN=12NP=NENP=2MN→MN=12NP=NE
→MNEF→MNEF là hình thoi
→ME⊥NF,EM→ME⊥NF,EM là phân giác ˆNEFNEF^
Tương tự FP⊥EQ,EQFP⊥EQ,EQ là phân giác ˆFEPFEP^
Lại có ˆNEF+ˆFEP=180o→ME⊥QENEF^+FEP^=180o→ME⊥QE
→GFHE→GFHE là hình chữ nhật
c.Để GFHEGFHE là hình vuông
→FE→FE là phân giác ˆGFHGFH^
→FE→FE là phân giác ˆNFPNFP^
→EF⊥NP→EF⊥NP
→MN⊥NP→MN⊥NP
→MNPQ→MNPQ là hình chữ nhật